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VARIANCE ESTIMATION OF NOMINAL-SCALE INTER-RATER RELIABILITY
WITH RANDOM SELECTION OF RATERS
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Most inter-rater reliability studies using nominal scales suggest the existence of two populations
of inference: the population of subjects (collection of objects or persons to be rated) and that of raters.
Consequently, the sampling variance of the inter-rater reliability coefficient can be seen as a result of
the combined effect of the sampling of subjects and raters. However, all inter-rater reliability variance
estimators proposed in the literature only account for the subject sampling variability, ignoring the extra
sampling variance due to the sampling of raters, even though the latter may be the biggest of the variance
components. Such variance estimators make statistical inference possible only to the subject universe.
This paper proposes variance estimators that will make it possible to infer to both universes of subjects
and raters. The consistency of these variance estimators is proved as well as their validity for confidence
interval construction. These results are applicable only to fully crossed designs where each rater must
rate each subject. A small Monte Carlo simulation study is presented to demonstrate the accuracy of
large-sample approximations on reasonably small samples.
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1. Introduction

We consider the problem of evaluating the extent of agreement between r raters who must
classify n subjects into one of q nominal response categories during a reliability experiment.
Fleiss (1971) proposed one of the most popular multiple-rater agreement coefficients in use to-
day. Fleiss’s statistic is often referred to as the generalized kappa coefficient, although it gen-
eralizes the π -statistic of Scott (1955) rather than the κ-statistic of Cohen (1960). Fleiss also
proposed a variance estimator of his generalized kappa under the assumption of no agreement
between raters. This variance estimator, although useful for testing the null hypothesis of no
agreement among raters, cannot be used for confidence interval construction, and therefore does
not measure the precision of the observed agreement coefficient. To solve this problem, Gwet
(2008) proposed a nonparametric variance estimator of Fleiss’s coefficient, which is consistent
and valid for confidence interval construction. However, Gwet’s proposal estimates the variance
due to the sampling of subjects only, and does not account for the variance due to the sampling
of the rater universe. In this paper, I propose a variance estimation procedure that accounts for
both sources of variability. In addition to Fleiss’s statistic, the new variance estimation procedure
will be applied to other agreement coefficients proposed in the literature. Although the problem
of raters as an additional source of sampling variability is common for metric-scale agreement
statistics, where it is addressed using analysis of variance models as discussed by McGraw and
Wong (1996), it has not been specifically addressed for nominal-scale agreement statistics.

Inter-rater reliability is regularly used in medical and social research to evaluate the relia-
bility of rating systems. To classify patients into various mental disease categories, psychiatrists,
for example, may develop a protocol that the nurses will use routinely. The nurses in this ex-
ample are often referred to as raters, judges, or observers. Their level of agreement represents
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a measure of the reliability of the classification system. Early attempts to develop a measure
of agreement go back to the works of Goodman and Kruskal (1954) who suggested the use
of the observed proportion of agreement corrected for chance-agreement. Janson and Vegelius
(1979) later indicated that the Goodman–Kruskal proposal may at times yield unpredictable re-
sults. Scott (1955), working in the context of conjoint analysis, proposed a two-rater agreement
coefficient referred to as the π -statistic, which Fleiss (1971) later generalized to the case of mul-
tiple raters. Cohen (1960), criticizing Scott’s statistic for its underlying assumption of marginal
homogeneity, proposed the well-known kappa statistic. Other authors such as Bennett, Alpert,
and Goldstein (1954), Holley and Guilford (1964), or Maxwell (1977) advocated the use of an
agreement coefficient similar in its form to Scott’s π -statistic and Cohen’s κ-statistic with the
difference that the chance-agreement probability is taken to be the inverse of the number of re-
sponse categories. These authors developed the same estimator independently giving it different
names.

More recently, Kraemer et al. (2002) provided an extensive overview of the kappa statis-
tic. They discussed several versions of the intraclass kappa as well as its application in various
medical research contexts. Advances have also been made in the area of confidence interval con-
struction for the intraclass kappa coefficient. Nam (2000) proposed a likelihood score method for
constructing a confidence interval of the intraclass kappa for binary data, which is more efficient
than the chi-square goodness-of-fit approach of Donner and Eliasziw (1992). On the other hand,
Zou and Klar (2005) proposed a noniterative procedure for obtaining a confidence interval for
the multivariate intraclass kappa statistic using a modified Wald-type procedure. This provides
an alternative confidence interval estimation procedure to the iterative procedure of Bartfay and
Donner (2001).

In addition to Fleiss, several other authors have proposed multiple-rater agreement coeffi-
cients. Light (1971) introduced measures of agreement conditionally upon a specific category.
Landis and Koch (1977), as well as Conger (1980), are other important contributions in the area
of multiple-rater agreement coefficient. Important extensions of the kappa statistic to ordinal and
interval data were proposed by Berry and Mielke (1988) and Janson and Olsson (2001, 2004).
These new indices express the kappa statistic as a function of the Euclidean distance between
pairs of multidimensional classification vectors. The use of the Euclidean distance allows for a
natural generalization of kappa from nominal to ordinal and to interval data. Of particular interest
is Janson and Olsson’s (2004) proposal that releases the requirement of having the same group
of raters rate each subject. Simon (2006) proposed an extension of the kappa statistic in the field
of sequential observation data, where agreement is measured on the proper identification of the
observation units to be rated as well as on their classification into categories. Simon (2006) also
discussed some of kappa’s paradox features. While acknowledging the limitations of kappa for
analyzing clinical diagnostic data, Simon (2006) argued that the paradoxes are not problematic
for analyzing observation data where all response categories have the same value (weight). Other
authors, such as Schuster (2004) or Schuster and Smith (2006), addressed the inter-rater relia-
bility problem within the framework of theoretical statistical models and have been able to gain
further insight into the nature of agreement among raters.

Although Scott’s π (pi) and Cohen’s κ (kappa) statistics are currently used in many scientific
fields, these two agreement measures have been severely criticized as they are often inconsistent
with the observed level of agreement among raters. Feinstein and Cicchetti (1990) presented
two troubling paradoxes associated with these measures, where low chance-corrected agreement
measures are coupled with a high observed agreement. Cicchetti and Feinstein (1990) discussed
alternative indexes in an effort to address these paradoxes. Zwick (1988) studied this paradox
issue and recommended a two-phase approach to inter-rater agreement assessment where a mar-
ginal homogeneity test will be performed first, followed with the kappa calculation if the homo-
geneity of the marginals is demonstrated. Byrt, Bishop, and Carlin (1993) attempted to improve
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on the kappa estimator by removing its dependency upon the trait prevalence. Their proposed
PABAK estimator was shown to be equivalent to the G-index of Holley and Guilford (1964). The
difficulties created by the kappa paradoxes led some authors such as Uebersax and Grove (1990,
1993) to consider alternative approaches for quantifying the rater agreement based on latent
models, which unlike kappa will take rater characteristics into consideration. Another informa-
tive overview of the kappa problem was given by Cook (1998). In another attempt to address the
paradox problem, an alternative and more stable (i.e., small variance) multiple-rater agreement
coefficient referred to as the AC1 statistic was proposed by Gwet (2008). Gwet (2008) also pro-
posed a nonparametric and consistent estimator for estimating its variance and showed its validity
for confidence interval construction with a Monte Carlo simulation study. Note that Brennan and
Prediger (1981) also suggested interesting alternative agreement measures. Although some au-
thors minimized the seriousness of the kappa’s paradoxes as a conceptual flaw of kappa, its heavy
dependency on trait prevalence remains a major problem to practitioners.

Although Fleiss (1971) proposed his multiple-rater agreement coefficient within a frame-
work where each subject is rated by different randomly selected group of raters, its variance
estimator was derived under the assumption of no agreement among raters beyond chance. That
is Fleiss’s proposed variance estimator is valid only if the “true” multiple-rater kappa is 0. More-
over, Fleiss did not take into consideration the variability due to the sampling of raters when
deriving the variance. Consequently, Fleiss’s variance estimator estimates the variance of the
multiple-rater kappa due the sampling of subjects only, and when the underlying agreement co-
efficient is assumed to be 0.

The variance estimators that Gwet (2008) proposed for his AC1 statistic as well as for Fleiss’s
kappa were also developed to estimate the variability due to the sampling of raters alone. Un-
like Fleiss’s variance estimator, the validity of Gwet’s variance estimators is guaranteed whether
the agreement coefficient is 0 or not. Consequently, the conclusions of a reliability experiment
obtained with existing variance estimation methods cannot be extended beyond the group of
participating raters. Resolving this limitation is the purpose of this paper.

In most practical settings, raters who are potential users of a classification system will not
be selected to participate in the reliability experiment. In order to still infer to the population of
subjects as well as to the whole population of raters, the variability due to the sampling of raters
must be taken into account. For this problem to be resolved, a new variance estimator must be
derived, its consistency for estimating the “true” variance proved, and the asymptotic normality
of the rater agreement coefficient established. Asymptotic normality guarantees the validity of
confidence intervals for large samples.

Section 2 presents a real-life example to show that the magnitude of inter-rater reliability is
very dependent upon the specific sample of raters who participated in the reliability experiment.
Section 3 describes the general framework within which the main results are obtained. Section 4
presents the main results for Gwet’s AC1 statistic as well as for Fleiss’s generalized kappa. The
proofs of these results are presented in the technical appendix. Section 5 illustrates the proposed
variance estimators using the example of Section 2. Section 6 present a small Monte Carlo ex-
periment to demonstrate the validity of the large-sample theory discussed in Sections 4, and 7 is
devoted to concluding remarks.

2. An Example

In a study conducted at the department of Educational Psychology and Leadership studies
of the University of Victoria (Canada), nine psychologists in the field of forensic mental health
rated 40 computer-modified images of adolescents on the five-item Tanner physical development
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FIGURE 1.
Kappa and AC1 coefficients for all nine rater subsamples for size 8.

TABLE 1.
Inter-rater reliability estimates for the nine subsamples of eight raters.

# AC1 Kappa Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Rater 7 Rater 8

1 0.694 0.690 1 2 3 4 5 6 7 8
2 0.613 0.608 2 3 4 5 6 7 8 9
3 0.600 0.596 1 2 3 4 5 6 7 9
4 0.623 0.617 1 2 3 4 5 6 8 9
5 0.639 0.635 1 2 3 4 5 7 8 9
6 0.631 0.627 1 2 3 4 6 7 8 9
7 0.625 0.620 1 2 3 5 6 7 8 9
8 0.608 0.604 1 2 4 5 6 7 8 9
9 0.624 0.619 1 3 4 5 6 7 8 9

scale. The Tanner physical development scale is a sexual maturity rating scale used to measure
the development of secondary sex characteristics.

The primary objective of this study was to evaluate the extent of agreement between psy-
chologists about matching the images with one of the five Tanner developmental stages. The
nine participating psychologists, numbered from 1 to 9, had various levels of experience with the
Tanner scales, from some familiarity to very familiar. The rating data obtained from this study is
given in Table 4.

This reliability study is based on a sample of 40 images and on a sample of nine raters. Using
the whole sample of subjects (images in this case) and the whole sample of raters, we evaluated
inter-rater reliability using the kappa and AC1 statistics and obtained the following estimates:

AC1 = 0.63 and kappa = 0.62.

My goal is to show how sensitive the inter-rater reliability can be to the specific sample of raters
that is used in this study. To this end, I have considered all nine subsamples of eight raters that can
be formed from the original full sample of nine raters. For each of the subsamples, I calculated
the corresponding kappa and AC1 statistics.

It appears from the results shown in Figure 1 and in Table 1 that the absence of rater 9 alone
from the sample yields a much higher inter-rater reliability (around 70%). The lowest agreement
level (about 60%) is obtained with sample 3, which is obtained by removing rater 8 from the
full sample. This example indicates that depending on the raters included in the rater sample, the
impact on raters agreement may be as high as 10%.
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FIGURE 2.
Kappa and AC1 coefficients for all 36 rater subsamples for size 7.

Using all 36 subsamples of size 7, which are obtained by removing two raters from the
full rater sample, we calculated 36 AC1 and kappa coefficients. The results depicted in Figure 2
indicate that depending on the seven raters used in the rater sample, inter-rater reliability can be
as low as 59% and as high as 72%. It is unlikely that this real-life example represents the worst
possible scenario that may occur in practice.

I deliberately used the University of Victoria study in this example to illustrate the sensitivity
of AC1 and kappa statistics to the sampling of raters, even though the Tanner scale is ordinal and
the use of other methods is often indicated for assessing the extent of agreement among raters.
This is not problematic since the ordinal nature of the Tanner scale does not affect the (rater)
sampling distributions of the agreement coefficients under investigation.

Consequently, different sample of raters of the same size may yield very different agree-
ment coefficients among raters. This is due to the fact that the observed magnitude of inter-rater
reliability does not simply represent raters ability to use a given classification system, but also
represents the characteristics of the specific rater and subject samples retained for the study.
Some authors have recommended a careful analysis of heterogeneity within the rater sample,
and have questioned the use of an overall measure of agreement if the rater is not homogeneous.
In fact, an heterogeneous rater sample, like any other heterogeneous sample, will increase the
variance of the statistics without affecting their validity. However, this issue should be addressed
by evaluating precisely the variance due to the sampling of raters as proposed in this paper.

3. The Framework

Although inter-rater reliability is commonly treated in terms of variance components mod-
els using the generalizability theory where the model parameters are the targets for inference,
I have adopted the randomization approach for inference in this paper, which is based on the
principles of finite-population sampling. The parameter that is subject to inference is the finite-
population value of the agreement coefficient γ . Cochran (1977) provided a good account of the
finite-population sampling theory. Although this approach to statistical inference differs from
the classical approach often used in the inter-rater reliability literature, the results obtained are
comparable if the finite populations are assumed to be infinitely large.

Throughout this paper, we assume that at the time the reliability experiment is designed,
the researcher knows (at least approximately) the number N of subjects and R of raters that are
targeted and has a way to contact them eventually for their participation to the study. Due to
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practical and cost considerations, not all N subjects nor all R raters are expected to participate
in the study. They merely define the target populations (or populations of inference). In some
instances, these population sizes may be unknown and would be approximated using appropriate
methods that are beyond the scope of this paper, or alternatively would be assumed infinitely
large. This last assumption will generally lead to more familiar results.

It is also assumed that of the N population subjects, the researcher decides to select n for
participation to the study, while including r of the R population raters. The reliability experiment
will then be implemented with a sample of r raters who must each classify every one of the n

subjects into one of q possible response categories. That is, the reliability experiment is based
on a fully crossed design. Let fn = n/N and fr = r/R denote, respectively, the subject and rater
sampling fractions (i.e., the proportion of the population that the sample size represents). Let
rik be the number of sample raters who classified sample subject i into category k following the
experiment. If all R population raters had participated in the experiment, an unknown number Rik

of them would have classified subject i into category k. However, Rik , which is the quantity the
researcher is interested in, is a population parameter that cannot be observed, therefore must be
approximated from the data.

Let us define some concepts and introduce some notations that will be used regularly in
Section 4. A rater randomly selected from the rater population will classify a randomly selected
subject into category k with a probability denoted by πk . When estimated from the samples of
raters and subjects, this probability will be denoted by π̂k . The probability πk and its estimator
π̂k are defined as follows:

πk = 1

N

N
∑

i=1

Rik

R
, and π̂k = 1

n

n
∑

i=1

rik

r
.

Obtaining rater agreement coefficients often involve the computation of the probability that
two randomly selected raters classify a randomly selected subject into the same category. When
calculated from the subject and rater populations, this probability will be denoted by Pa and its
sample-based estimator by pa . Then,

Pa = 1

N

N
∑

i=1

q
∑

k=1

Rik(Rik − 1)

R(R − 1)
, and pa = 1

n

n
∑

i=1

q
∑

k=1

rik(rik − 1)

r(r − 1)
.

Two raters who agree about the classification of a subject, may reach that agreement by chance
without actually having the same look at the subject. It is widely accepted in the inter-rater relia-
bility literature that the impact of agreement by chance must be minimized when evaluating the
extent of agreement among raters. Therefore, the probability of occurrence of this event is essen-
tial for obtaining a precise assessment of raters’ agreement level. Practitioners extensively use
the method proposed by Fleiss (1971) for computing the chance-agreement probability. However,
Gwet (2008) proposed an alternative approach for obtaining the same probability that was shown
to have better statistical properties. Using population data, Fleiss’s and Gwet’s chance-agreement
probabilities, denoted respectively as Peπ and Peγ , are given by

Peπ =
q

∑

k=1

π2
k , and Peγ = 1

q − 1

q
∑

k=1

πk(1 − πk).

These two parameters can be estimated from the samples using the following estimators:

peπ =
q

∑

k=1

π̂2
k , and peγ = 1

q − 1

q
∑

k=1

π̂k

(

1 − π̂k

)

.



KILEM LI GWET 413

The generalized kappa agreement statistic γ̂π suggested by Fleiss (1971) for estimating inter-
rater reliability is given by γ̂π = (pa − peπ)/(1 − peπ), while the AC1 estimator of Gwet (2008)
is defined as γ̂1 = (pa − peγ )/(1 − peγ ). Gwet (2008) indicated that, conditionally upon the
sample of raters (i.e., no variance is expected from the sampling of raters), a consistent estimator
of the variance of γ̂1 is given by

vG (γ̂1) = 1 − fn

n

1

n − 1

n
∑

i=1

(

γ̂ ∗
1|i − γ̂1

)2
, (1)

where γ̂ ∗
1|i = γ̂1|i − 2(1 − γ1)(peγ |i − peγ )/(1 − peγ ), γ̂1|i = (pa|i − peγ )/(1 − peγ ), pa|i and

peγ |i being defined as

pa|i =
q

∑

k=1

rik(rik − 1)

r(r − 1)
and peγ |i = 1

q − 1

q
∑

k=1

π̂k

(

1 − rik

r

)

. (2)

Note that a variance estimator is said to be consistent if it tends to estimate the correct variance
for large sample sizes. That is, its bias and standard error go to 0 as the number of sample
subjects increases. Similarly, conditionally upon the sample of raters, a consistent estimator of
the variance of γ̂π is given by

vG (γ̂π ) = 1 − fn

n

1

n − 1

n
∑

i=1

(

γ̂ ∗
π |i − γ̂π

)2
, (3)

where γ̂ ∗
π |i = γ̂π |i − 2(1 − γ̂π )(peπ |i −peπ)/(1 −peπ), γ̂π |i = (pa|i −peπ)/(1 −peπ ), peγ |i be-

ing defined as

peπ |i =
q

∑

k=1

π̂k

rik

r
. (4)

Note that the variance estimator Fleiss (1971) proposed for γ̂π , when adapted to the finite-
population context, is given by

vF (γ̂π ) = 1 − fn

n

1

r(r − 1)

peπ − (2r − 3)p2
eπ + 2(r − 2)

∑q

k=1 π̂3
k

(1 − peπ)2
,

the final population correction factor being the only difference between this formula and Fleiss’s.
The variance estimators of (1) and (3) work well for estimating the variances of the AC1 and π

estimators conditionally upon the rater sample, as indicated in the Monte Carlo simulation pre-
sented by Gwet (2008). Fleiss’s variance estimator vF (γ̂π ), on the other hand, was derived under
the assumptions that there was no agreement among raters beyond chance, that each subject is
rated by a different randomly selected group of raters, and that these ratings follow a multinomial
distribution with probabilities π1, . . . , πq . Fleiss’s estimator also ignores the variability due the
sampling of raters like Gwet’s estimator. It will primarily be useful for testing the hypothesis that
there is no agreement among raters, and should not be used to quantify the precision of the π

statistic nor to construct confidence intervals. Its validity also relies heavily upon the multinomial
distribution assumed for the ratings. Gwet’s estimator can be used either for hypothesis testing,
for quantifying the precision of the π statistic, or for constructing confidence intervals, and is not
based on any particular assumption. Therefore, the two variance estimators will be equal only
under the assumption that there is no agreement among raters beyond chance, and if there are
three raters or more involved it may be necessary to further assume that the rating of subjects
are independent. That is, vG (γ̂π ) and vF (γ̂π ) will be equal only if the conditions that ensure the
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validity of Fleiss’s variance estimator are satisfied. Because the variance estimators vG (γ̂1) and
vG (γ̂π ) both consider the sample of raters to be fixed and not subject to sampling variability,
the resulting significance tests or confidence intervals will be valid only for the specific group of
raters who participated in the reliability experiment. However, it is a fact that researchers have
a natural tendency to generalize their findings to bigger groups of raters. Consequently there is
a need to have a variance estimator that will simultaneously account for both the subject and
the rater sampling variability. We will not consider generalizing Fleiss’s variance estimator to
account for the sampling of raters because of its limited applicability.

Let us consider, for example, a reliability study that led to an inter-rater reliability co-
efficient of γ̂ = 70%. Can a researcher claim that the extent of agreement among raters is
greater than 60%? The correct answer to this question depends on which group of raters is
being targeted for inference. If the researcher targets only the group of raters that participated
in the experiment, then one may conclude that 70% is significantly greater than 60% if 0.60 >

0.7–1.96
√

v(γ̂ ), where v(γ̂ ) is given either by (1) or by (3) depending on the statistic being used.
This statement assumes that, conditionally on the rater sample, the asymptotic distribution of γ̂

is normal. Note that one of the objectives of this paper is to establish the more general result of
asymptotic normality of the unconditional distribution of γ̂ .

If the researcher likes to infer to a group of raters larger than the one that participated in
the reliability experiment, then neither (1) nor (3) provide the correct method for evaluating the
variance of the inter-rater reliability coefficient. As shown in the Monte Carlo simulation study
presented in Section 6, the estimators in (1) and (3) underestimate the correct variance when the
participating raters only represent a sample of a bigger universe of potential raters.

The exact variance of the inter-rater reliability coefficient that accounts for the two sources of
variability due to the sampling of raters and subjects is difficult to obtain. Instead, we will derive
a large sample approximation and will propose a consistent variance estimator (i.e., a variance
estimator that converges to the “true” unconditional variance as the subject and rater sample sizes
increase). Asymptotic normality for the AC1 and π statistics will be proved as well, showing
thereby the validity of confidence intervals based on the proposed variance estimators.

4. Large-Sample Results

This section presents the proposed unconditional variance estimators for the AC1, and
Fleiss’s generalized kappa statistics, as well as Theorem 1, which establishes their asymptotic
normality, the main result of this paper. Three lemmas containing intermediary results needed to
prove Theorem 1 are also presented. Throughout this section, the probability distributions of the
agreement coefficients are defined with respect to both the sampling of subjects as well as the
sampling of raters.

In order to avoid redundancy, we will use a general expression for the agreement co-
efficient that encompasses several known agreement statistics, including the AC1 coefficient,
the generalized kappa statistic, and possibly other agreement coefficients. Let γ̂ be the inter-
rater reliability statistic whose large-sample properties are being investigated. We assume that
γ̂ = (pa − pe)/(1 − pe), where pa is defined as in Section 3 and the chance-agreement proba-
bility pe defined as

pe =
q

∑

k=1

π̂kf (π̂k), where f (x) = ax + b, (5)

f (·) being a real-valued function defined in the interval (0,1), a, and b two real numbers. The
chance-agreement probabilities peγ and peπ used, respectively, for the AC1 and Fleiss’s kappa
are special cases of pe. For f (x) = x (i.e., a = 1, and b = 0), one obtains Fleiss’s generalized
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kappa, while f (x) = (1 − x)/(q − 1) (i.e., a = −1/(q − 1), and b = 1/(q − 1)) yields Gwet’s
AC1 coefficient. For the remaining part of this paper, we will often use pe or γ̂ to refer to both
agreement coefficients studied in this paper and f ′ is the first-order derivative of function f . The
population-level chance-agreement probability Pe is expressed as in (5) with π̂k being replaced
by πk .

Let pik = rik/r and Pik = Rik/R be, respectively, the sample and population proportions
of raters to classify subject i into category k. In order to derive the unconditional variance of
the agreement coefficient γ̂ , which accounts for both the sampling of subjects and that of raters,
I approximated γ̂ by a linear function of the pik’s. The validity of this approximation for large
rater and subject samples is established in Lemma 1.

Let us introduce the following notations for a sample rater α, and a sample subject i:

⇒ π̂
(α)
k : proportion of sample subjects that rater α classified into category k,

⇒ αi : response category into which rater α classified subject i,

⇒ p(α)
a = 1

n

n
∑

i=1

piαi
, p(α)

e = (

1 − γ̂
)

q
∑

k=1

π̂kf
(

π̂
(α)
k

)

, γ̂(α) = p
(α)
a − p

(α)
e

1 − pe

,

pa|i =
q

∑

k=1

rik(rik − 1)

r(r − 1)
, γ̂i = pa|i − pe

1 − pe

, γ̂ ∗
i = γ̂i − 2a

1 − γ̂

1 − pe

q
∑

k=1

π̂k

(

pik − π̂
)

.

Note that p
(α)
a can be seen as the probability that a randomly chosen rater and rater α agree

(i.e., classify a randomly chosen subject into the same category). On the other hand, p
(α)
e is the

probability that a randomly chosen rater and rater α agree by chance, while γ̂(α) estimates the
extent of agreement between rater α and the other raters in the rater universe.

The estimator that we propose for computing the variance of the agreement coefficient γ̂ is
given by

v(γ̂ ) = vs(γ̂ ) + vr(γ̂ ), where,

⎧

⎨

⎩

vs(γ̂ ) = 1−fn

n
s∗2
γ , and s∗2

γ = 1
n−1

∑n
i=1(γ̂

∗
i − γ̂ )2,

vr (γ̂ ) = 4 1−fr

r
1
r

∑r
α=1(γ̂(α) −̂γ (•))2.

(6)

The variance estimator v(γ̂ ) of γ̂ given by (6) has two components. The first component vs(γ̂ )

is the variance due to the sampling of subjects, and the second component vr(γ̂ ) estimates the
variance due to the sampling of raters. It appears that the rater component of the variance will
be small if the agreement coefficient γ is high or the number of raters in the sample is high. If
the rater sample is small or the agreement coefficient is low (below 70% say), then it is strongly
recommended to compute the rater component of the variance. The Monte Carlo simulation of
Section 6 further discusses the importance of this variance component.

It should be noted that unconditional variance estimators v(γ̂1) and v(γ̂π ) for the AC1 and
generalized kappa statistics are obtained directly from (6) using the appropriate f function. Both
variance estimators are included in the Monte Carlo experiment presented in Section 6.

The next theorem contains the main result of this paper regarding the asymptotic normality
of the AC1 and the generalized kappa estimators when both the subject and rater sample sizes
are large. Let fr and fn be, respectively, the rates at which the rater and subject populations are
sampled. Throughout this section, the following three conditions are assumed to be satisfied:

(a) limr→∞ fr = ν0, for 0 < ν0 < 1,
(b) pe = θe + op(1), for 0 ≤ θe < 1, and
(c) limn→∞ fn = f0, for 0 < f0 < 1.
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Condition (a) indicates that the rater universe is sampled at a positive rate excluding the case
where all population raters are sampled. Condition (b) guarantees that chance-agreement proba-
bility is smaller than 1, at least for large samples, which ensures the existence of the inter-rater
reliability coefficient. Condition (c) states that the subject population is sampled at a positive rate
and excludes the case where all population subjects are sampled with certainty.

Theorem 1. If conditions (a), (b) (for γ̂π only), and (c) are satisfied, then as r → ∞ and n →
∞ the statistic γ̂ converges weakly to the normal distribution. That is, for γ given by γ =
(Pa − Pe)/(1 − Pe), we have that

γ̂ − γ√
v(γ̂ )

L−→ N (0,1).

If the rater and subject samples are “sufficiently large”, Theorem 1 guarantees that the pro-
posed variance estimator can be used to construct symmetric normality-based confidence inter-
vals for γ with a coverage rate that is close to its nominal value. This result is confirmed by the
simulation study of Section 6. However, for small to moderate samples, the agreement coefficient
γ̂ will have a skewed distribution unless the “true” agreement coefficient γ is 0.5. In this case,
alternative approaches such the bootstrap confidence intervals may be used. This skewness will
disappear as the rater and subject sample sizes increase. However, the Monte Carlo study re-
sults reported in Table 5 indicate that for an agreement coefficient around 63%, valid confidence
intervals can be obtained for rater sample sizes as small as 5, and subject sample size as small
as 20. I would even expect subject sample sizes around 15 to still yield valid confidence intervals,
although the precision of the of statistics may not be very good.

To prove Theorem 1, I will first approximate the agreement coefficient γ̂ by a linear func-
tion of the pi ’s where p	

i = (pi1, . . . , piq). This linear approximation will be in the form
γ̂ = γ + λ + Remainder, where λ is the sample mean of the λi ’s, λi = �	

i (pi − P i ) (for some
vectors (�i )i≥1), and the “remainder” being a random variable, which can be neglected based on
its stochastic order of magnitude. It follows from the multivariate central limit theorem (see Rao,
2002) that the ratio λ/

√

V (λ) converges in distribution to N (0,1). The proof will be completed
by demonstrating that the remainder converges in probability to 0, that the ratio v(γ̂ )/V (λ) con-
verges in probability to 1, and by evoking Slutsky’s theorem (see Rao, 2002). Slutsky’s theorem
stipulates that if two random sequences Xn and Yn converge in law to X, and in probability to a
constant a, respectively, then the sequence g(Xn,Yn) converges in law to g(X,a) for any contin-
uous function g. Only a few lemmas needed to prove Theorem 1 are presented in the main text,
the complete proofs can be found in Appendix.

Let us introduce the following notations:

• αi : Category into which rater α classified subject i.
• Piαi

: Probability for a randomly chosen rater to classify subject i into category αi (i.e.,
the category where rater α classified subject i).

• π
(α)
k : Probability that rater α classify a randomly chosen subject into category k.

• P
(α)
a and P

(α)
e , respectively, represent the probability that a randomly chosen rater and

rater α agree, and the probability that the two raters agree by chance. The resulting agree-
ment coefficient is γ(α) = (P

(α)
a − P

(α)
e )/(1 − Pe).

• Pa|i : Probability that two randomly selected raters classify subject i into the same cate-
gory.

• P (α)
a = 1

N

N
∑

i=1

Piαi
, P (α)

e = (1 − γ )

q
∑

k=1

πkf
(

π
(α)
k

)

, Pa|i =
q

∑

k=1

Rik(Rik − 1)

R(R − 1)
,
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• γi = (Pa|i − Pe)/(1 − Pe), γ ∗
i = γi − 2a

1 − γ

1 − Pe

q
∑

k=1

πk(Pik − πk), π
(α)
k = 1

N

N
∑

i=1

η
(α)
ik ,

where η
(α)
ik = 1, if rater α classifies subject i into category k, and η

(α)
ik = 0 otherwise.

Lemma 1. Suppose that conditions (a), (b), and (c) are satisfied. Then, as n, r → ∞, we have

γ̂ = γ + 1

n

n
∑

i=1

λi + Op(1/n) + Op(1/r),

λi = (γ ∗
i − γ ) +

q
∑

k=1


ik(pik − Pik), and 
ik = 2[Pik − a(1 − γ )πk]
1 − Pe

.

Lemma 1 stipulates that the agreement coefficient γ̂ can be expressed as the summation of
a linear function of the vectors pi ’s and a remainder made up of two random variables, one of
which has the same stochastic magnitude order as 1/n (i.e. is Op(1/n)), and the other has the
same stochastic magnitude order as 1/r (i.e. is Op(1/r)). Section A.2 of Appendix gives a more
detailed account of the Op notations.

Lemma 2 gives an expression of the “true” unconditional variance of λ.

Lemma 2. Suppose that conditions (a), (b), and (c) are satisfied. Then,

V (λ) = 1 − fn

n
S∗2

γ + 4(1 − fr)

r

1

R

R
∑

α=1

(

γ(α) − γ (•)
)2 + A + B,

where S∗2
γ , A, and B are given by

S∗2
γ = 1

N − 1

N
∑

i=1

(

γ ∗
i − γ

)2
, B = (1 − fr)

r(R − 1)

1

N2

N
∑

i=1

N
∑

j=1

�ij ,

A = (1 − fn)(1 − fr)R

nr(R − 1)

(

1

N

N
∑

i=1

�ii − 1

N(N − 1)

N
∑

N
∑

i �=j

�ij

)

,

�ij = 1

R

R
∑

α=1

(


iαi
− 
i(•)

)(


jαj
− 
j(•)

)

, and 
i(•) = 1

R

R
∑

α=1


iαi
.

Lemma 3, which is stated without proof, says that the two random variables (γ̂ −γ )/
√

v(γ̂ )

and λ/
√

V (λ) differ by a random variable that converges in probability to 0. Therefore, the two
random variables have the same asymptotic distribution.

Lemma 3. If conditions (a), (b), and (c) are satisfied, then

γ̂ − γ
√

v(γ̂ )
= λ

√

V (λ)
+ op(1).

It is also possible to demonstrate that the proposed variance estimator of γ̂ is good for
estimating the “true” variance of γ̂ , in the sense that the ratio v(γ̂ )/V (γ̂ ) converges in probability
to 1.
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TABLE 2.
AC1, kappa statistics, and associated precision measures.

Statistics AC1 Kappa

Agreement coefficient 62.9% 62.4%
S.E.a due to the sampling of subjects (

√

vs(γ̂ )) 4.6% 4.5%
S.E. due to the sampling of raters (

√

vr (γ̂ )) 5.5% 5.5%
Unconditional standard error (

√

v(γ̂ )) 7.3% 7.3%

95% C.I.b conditionally upon the rater sample (53.6%; 72.1%) (53.4%; 71.4%)
Unconditional 95% confidence interval (48.2%; 77.5%) (47.8%; 77.0%)

aStandard error.
bConfidence interval.

5. Application

In this section, we apply the variance estimation techniques discussed in Section 4 to the
experimental data on sexual maturity of Section 2. Because the researchers in this study did not
report the size of the target subject population nor that of the rater population, I considered them
to be reasonably large by assuming N = 1,000 for the subject population and R = 100 for the
rater population. The subject and rater sample sizes are given by n = 40 and r = 9, respectively,
as seen in Section 2.

Table 2 shows various precision measures calculated for the AC1 and kappa coefficients. The
AC1 and kappa agreement coefficients are 62.9% and 62.4%, respectively. If only the variance
due to the sampling of subjects is taken into account as is often done, the standard error of the
agreement coefficient will be around 5%. This leads to a substantial underestimation of the over-
all sampling variability associated with the agreement coefficient. In fact, Table 2 also indicates
that the standard error due to the sampling of raters is about 6%, and should be taken into con-
sideration. This yields an overall unconditional standard error for the agreement coefficient of
about 7%.

Overlooking the rater component of the variance will lead to confidence intervals that are
narrower than they should normally be. As Table 2 suggests, the 95% confidence interval of either
agreement coefficient, when based on the sampling of subjects alone (i.e. conditionally upon
the current rater sample) is about (53,72), while the unconditional confidence interval given
by (48,78) is much wider. Based on the conditional confidence interval, one would conclude
that the difference between the observed raters agreement and 50% is statistically significant.
However, if we use the unconditional confidence interval, this conclusion does not hold anymore.

The next section presents a Monte Carlo simulation aimed at demonstrating the validity of
the unconditional confidence interval. We demonstrate the fact that, by sampling simultaneously
both the universe of raters and that of subjects, the confidence intervals obtained will contain the
“true” agreement coefficient at a coverage rate that is close to its nominal value.

6. Monte Carlo Simulation

The Monte Carlo experiment presented in this section has two objectives: (i) to validate the
normality of the AC1 and the generalized kappa statistics sampling distribution as stated in Theo-
rem 1 for large subject and rater samples, and (ii) to verify that the proposed variance estimators
approximate the “true” variance reasonably well. The validation of normality is carried out by
comparing the coverage rate of the normality-based confidence interval to its nominal value.
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A small difference between the two values would validate Theorem 1. Although validating nor-
mality will also validate the proposed variance estimators, the latter will further be explored by
computing the magnitude of their biases. The biases of the AC1 and kappa statistics will also be
computed to evaluate their propensity for estimating the correct agreement coefficient.

The bias of an estimator is the difference between its Monte Carlo expectation and the popu-
lation parameter that is being estimated. The bias of a variance estimator on the other hand, is the
difference between its Monte Carlo expectation and the Monte Carlo variance of the agreement
coefficient. A small bias is desirable as it indicates that a given estimator or variance estimator
has neither a tendency to overestimate the true population parameter nor a tendency to underes-
timate it. Normality is verified by comparing the nominal coverage rate of confidence intervals
(usually 95%) to the Monte Carlo relative to the number of times that the constructed confidence
interval contains the true population inter-rater reliability.

To conduct this experiment, I generated a population of N = 100 subjects (labeled as i =
1, . . . ,100), and a population of R = 20 raters (labeled as l = 1, . . . ,20). One of 5 (i.e., q = 5)
possible response categories (labeled as k = 1, . . . ,5) was then associated with each subject
in such a way that category 1 is assigned about 50% of all population subjects, while each of
the remaining four categories is assigned about 12.5% of the population subjects. My primary
objective was to create a subject population with high prevalence rate of category 1. The specific
percentages of 50% and 12.5% were selected arbitrarily.

The actual number of subjects per category is known only after these subjects are assigned,
as this is done randomly. The categories so obtained represent the “correct” classification of
subjects or the “gold standard”. To complete the construction of population data, I accomplished
the following tasks:

• Fifty randomly chosen population subjects were assigned to category 1, while the remain-
ing 50 population subjects were randomly assigned (with the same probability) to one of
the four remaining categories.

• I assumed that 80% of the time a rater will classify the subject being rated into the “cor-
rect” category. That is, 20% of the time the rating is done randomly, leading to a clas-
sification that may or may not be correct. This situation will occur when the rater, not
knowing the correct answer, decides to take a leap of faith by assigning a subject to a
randomly chosen category. For any subject, the number of correct nonrandom ratings is
determined according to the binomial distribution B(20,0.8). Consequently, each time a
subject is rated, 16 raters on average are expected to perform a correct nonrandom rating.

• After determining their numbers, the specific raters who have performed the correct non-
random ratings were also determined randomly. After this step, I had a complete popu-
lation dataset with 100 subjects, 20 raters and their ratings, as well as labels indicating
which of the ratings were random. These population data, which are usually not available
to the researcher, tell us how each potential rater is expected to classify each subject.

After selecting a sample of subjects and a sample of raters, the rating data needed to compute the
agreement coefficient estimates and associated standard errors will come from ratings generated
at the population level.

At the population level, the AC1 and generalized kappa coefficients were evaluated at γ1 =
0.62 and γπ = 0.53, respectively. The population data generated for this study, as well as the
Monte Carlo simulation programs written in the SAS IML language, can be obtained from the
author.

The simulation consists of selecting successively 10,000 replicate subject samples and
10,000 replicate rater samples of various sizes. The simulation was carried out for the subject
sample size values of n = 20, 30, 40, 50, and for the rater sample size values of r = 5, 7, 9, 11,
and 13. When the rater and subject samples are small, the chance-agreement probability pe|π
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TABLE 3.
Relative biases of agreement coefficients, their Monte Carlo standard errors, and efficiency of γ̂1 to γ̂π .

n r
√

VMC (γ̂1)
√

VMC (γ̂π ) e(γ̂1|γ̂π ) RB(γ̂1) RB(γ̂π ) Vr/VT (γ̂1) Vr/VT (γ̂π )

(%) (%) (%) (%) (%) (%)

20 7.6 9.1 1.4 0.15 −2.7 23.7 17.8
5 30 5.9 7.0 1.4 0.07 −1.5 26.4 20.0

40 4.9 5.6 1.3 −0.05 −1.0 29.2 22.3
50 4.1 4.7 1.3 0.03 −0.6 33.1 25.4

20 6.5 8.1 1.5 0.19 −2.6 28.4 20.4
7 30 5.1 6.2 1.5 0.25 −1.2 31.6 23.2

40 4.2 5.0 1.4 0.17 −0.7 34.9 26.0
50 3.5 4.2 1.4 0.13 −0.4 38.7 29.2

20 5.7 7.3 1.6 0.20 −2.5 29.5 20.0
9 30 4.5 5.6 1.6 0.06 −1.5 32.7 22.7

40 3.7 4.5 1.5 0.08 −0.9 35.8 25.3
50 3.1 3.8 1.5 0.12 −0.5 40.0 28.9

20 5.1 6.7 1.8 0.30 −2.3 28.5 17.8
11 30 3.9 5.1 1.7 0.15 −1.3 31.3 20.2

40 3.2 4.2 1.6 0.07 −0.8 34.4 22.9
50 2.7 3.5 1.6 0.03 −0.5 38.8 26.3

20 4.5 6.3 1.9 0.26 −2.3 25.6 14.8
13 30 3.5 4.8 1.9 0.15 −1.4 28.1 16.7

40 2.9 3.8 1.8 0.10 −0.8 31.3 19.1
50 2.4 3.2 1.7 0.05 −0.6 35.1 21.9

may take a value of 1 leading to a division by 0 in the calculation of the π -statistic. To avoid
this problem in the simulation programs, the calculation of the π -statistic was modified slightly
in such a way that if pe|π = 1, then 1 is replaced with 0.99999 to have a defined agreement
coefficient.

Table 3 contains the Monte Carlo standard errors and relative biases of agreement coeffi-
cients γ̂1 and γ̂π . The Monte Carlo relative bias of an agreement coefficient γ̂ denoted by RB(γ̂ )

is obtained as follows:

RB(γ̂ ) =
(

1

10,000

10,000
∑

s=1

γ̂s − γ

)

/

γ,

where γ is the “true” value of the agreement coefficient calculated at the population level, and γ̂s

is the agreement coefficient estimate obtained from one specific rater-subject pair s of samples
(i.e., one pair s = (sr , ss) of samples is made up of a rater sample sr and a subject sample ss ,
and the simulation generates 10,000 such pairs). The Monte Carlo variance of γ̂ used to obtain
standard errors is denoted by VMC (γ̂ ) and given by

VMC (γ̂ ) = 1

10,000

10,000
∑

s=1

(

γ̂s − AV(γ̂ )
)2

, (7)

where AV(γ̂ ) is the average of all 10,000 estimates γ̂s , s = 1, . . . ,10,000. The standard errors so
obtained are depicted in Figure 3. This figure indicates that the standard error of an agreement
coefficient decreases as r or n increases, giving another indication that the rater sample also may
affect the precision of inter-rater reliability substantially.
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FIGURE 3.
Standard errors of AC1 and kappa for various rater and subject sample sizes.

Table 3 also shows the relative efficiency of the AC1 coefficient to Fleiss’s generalized kappa.
This efficiency is denoted by e(γ̂1|γ̂π ) and is defined as the ratio of VMC (γ̂π ) to VMC (γ̂1). It
indicates a striking gain in efficiency for the AC1 statistic over Fleiss’s generalized kappa, which
ranges from 40% to 140%. The relative bias of the AC1 and generalized kappa are often very
small even for small sample sizes. It is consistently smaller than 0.30% for the AC1 statistic, and
smaller than 3% for the generalized kappa statistic. While the generalized kappa has a tendency to
underestimate the true value, the AC1 tends to overestimate it very slightly. The last two columns
of Table 3 contain the percent of total variance accounted for by the rater variance component
for the AC1 and the generalized kappa, respectively. The rater variance component of the AC1
statistic represents between 25% and 40% of the total AC1 variance depending on the sample
sizes. That percent varies between 15% and 30% for the generalized kappa. These results show
that neglecting the rater variance component may lead to a dramatic understatement of the total
variance.

We have studied four variance estimators in this Monte Carlo simulation. These are v1 the
variance estimator of γ̂1 conditionally upon the rater sample given in (1), v∗

1 the unconditional
variance estimator of γ̂1 given by (6) with function f (x) = (1 − x)/(q − 1), vπ the variance
estimator of Fleiss’s generalized kappa γ̂π conditionally upon the rater sample, given by (3), and
v∗
π the unconditional variance of γ̂π given by (6) with function f (x) = x. The results presented

in Table 5 demonstrate the superior performance of the proposed variance estimators v∗
1 and

v∗
π over v1 and vπ for performing statistical inference to both subject and rater universes. This

superior performance appears in the form of a better coverage rate of the resulting confidence
intervals.

Table 5 shows the relative biases of the four variance estimators under investigation as well
as the Monte Carlo coverage rates of the corresponding 95% confidence intervals. The relative
bias RB(v) of a variance estimator v is defined as the relative difference between its Monte
Carlo expectation and the Monte Carlo variance of the agreement coefficient. The Monte Carlo
expectation of a variance estimator v is obtained by averaging all 10,000 variance estimates vs

obtained from each replicate pair of samples s. More formally, we have that

RB(v) =
(

1

10,000

10,000
∑

s=1

vs − VMC (γ̂ )

)

/

VMC (γ̂ ),

where the Monte Carlo variance VMC(γ̂ ) is given by (7). To compute the coverage rates of Table 5,
a 95% confidence interval was constructed for each variance estimator under study and each
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TABLE 4.
Ratings of 40 images of unclothed persons on a five-point sexual maturity rating (or Tanner) scale.

Subject Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Rater 7 Rater 8 Rater 9

1 2 2 2 2 2 2 2 2 1
2 5 5 5 5 5 5 5 5 5
3 4 3 3 4 3 3 3 3 4
4 4 3 3 3 3 3 2 3 4
5 1 1 1 1 1 2 1 1 2
6 4 4 4 4 4 4 4 4 5
7 5 5 5 5 5 5 5 5 5
8 1 1 1 1 1 1 1 1 1
9 5 5 5 5 5 5 5 5 5

10 1 1 2 1 1 1 2 1 2
11 2 2 2 2 2 2 2 2 3
12 2 2 3 3 3 2 2 2 3
13 1 1 1 2 2 1 2 1 2
14 2 3 3 3 3 2 3 3 3
15 5 5 5 5 5 5 5 5 5
16 5 5 5 5 5 5 5 5 5
17 3 3 3 4 3 3 3 3 3
18 3 3 3 3 3 3 3 3 4
19 1 2 1 2 1 1 2 1 3
20 1 1 1 1 1 1 1 1 2
21 1 1 1 1 1 1 1 1 1
22 4 4 4 4 3 3 4 4 4
23 2 3 2 3 3 1 3 2 2
24 4 2 3 4 3 2 4 4 2
25 2 4 2 2 2 3 2 2 5
26 5 5 5 5 5 5 5 5 5
27 1 2 1 1 2 1 1 1 1
28 5 5 5 5 5 3 5 5 5
29 2 2 2 2 2 2 2 2 3
30 3 3 3 3 4 3 3 3 3
31 3 4 3 4 3 3 3 3 3
32 3 3 2 3 3 2 2 3 4
33 5 4 5 5 5 4 4 5 5
34 3 4 3 3 4 3 4 4 3
35 1 1 1 1 2 1 1 1 1
36 1 1 1 1 1 1 1 1 1
37 4 4 4 4 4 4 4 4 5
38 5 5 5 5 5 5 5 5 5
39 3 3 3 4 3 3 4 3 5
40 1 1 1 1 1 1 1 1 1

replicate sample s. The coverage rate is then obtained as the relative number of times the interval
contains the “true” population agreement coefficient.

It follows from Table 5 that the two unconditional variance estimators v∗
1 and v∗

π have rel-
ative biases that decrease quickly as the rater and subject sample sizes increase. The variance
estimators v1 and vπ , which are obtained conditionally upon the rater sample, have relative bi-
ases that tend to increase with the sample sizes. They both dramatically underestimate the “true”
variance, are therefore not consistent estimators, and cannot successfully be used for construct-
ing confidence intervals. Moreover, the seemingly larger relative bias of v∗

1 as compared to that
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TABLE 5.
Relative biases of agreement coefficient variances and coverage rates of associated confidence intervals.

r n RB(v1) RB(vπ ) RB(v∗
1) RB(v∗

π ) CR(v1) CR(vπ ) CR(v∗
1 ) CR(v∗

π )

(%) (%) (%) (%) (%) (%) (%) (%)

5 20 −13.9 −13.8 12.9 4.9 91.5 91.4 94.9 94.2
30 −25.6 −22.6 1.1 −3.3 89.5 90.2 93.8 93.3
40 −32.7 −28.3 −5.0 −7.8 88.6 89.6 93.3 93.0
50 −44.6 −39.2 −17.2 −18.6 85.0 86.9 91.6 91.4

7 20 −16.3 −15.6 17.0 6.1 91.0 91.2 95.5 94.5
30 −22.6 −19.7 13.1 4.6 90.1 91.3 95.3 94.6
40 −31.4 −23.7 5.4 3.1 88.8 90.6 94.8 94.7
50 −41.2 −34.9 −4.1 −7.9 86.0 87.8 93.4 93.2

9 20 −13.4 −11.3 22.9 11.0 91.5 92.4 95.9 95.5
30 −19.7 −15.4 19.3 9.5 91.2 92.2 96.1 95.4
40 −29.6 −22.6 9.7 3.7 89.3 91.1 95.0 95.0
50 −37.2 −28.3 4.7 0.7 87.4 90.0 94.7 94.7

11 20 −13.1 −11.8 21.6 7.3 91.6 92.5 96.2 95.3
30 −18.9 −15.2 18.0 6.3 91.2 92.4 95.9 95.2
40 −23.9 −18.7 16.0 5.5 90.6 91.9 95.9 95.3
50 −33.0 −22.8 9.5 4.7 88.9 91.3 95.5 95.1

13 20 −10.9 −9.2 19.8 6.6 92.0 93.3 95.8 95.6
30 −14.7 −11.6 18.6 6.1 92.2 92.9 96.1 95.5
40 −20.7 −13.0 15.4 7.5 91.2 93.1 95.9 95.5
50 −29.2 −21.0 9.1 1.1 89.6 92.2 95.5 95.1

of v∗
π , is due to the often small Monte Carlo variance of γ̂1 that appears in the denominator of

the relative bias.
The coverage rates of the two unconditional variance estimators are all reasonably close to

their nominal values of 95% when the rater sample size is 7 or bigger. Conditionally upon the
rater sample, the variance estimators v1 and vπ yield confidence intervals with poor coverage
rates even when the rater and subject sample sizes are large.

7. Concluding Remarks

The goal of this research was to develop statistical procedures for inferring simultaneously
to the universe of subjects and that of raters. The procedures discussed by Gwet (2008) are
valid for inferring to the universe of subject only for a given sample of raters. The limitations
of procedures that are conditional on the rater sample can be serious if the researcher aims to
project his findings to a bigger universe of raters.

We have proposed estimators for computing the variances of the AC1 and Fleiss’s gener-
alized kappa statistics that take into account the sampling variability of the rater sample. The
proposed unconditional variance estimators were shown to be consistent for estimating the true
unconditional variance. Moreover, the AC1 and generalized kappa sampling distributions were
shown under certain conditions to be asymptotically normal when the subject and rater sample
sizes increase simultaneously. The Monte Carlo simulation validated this result as seen by the
coverage rates of the confidence intervals. In general, the Monte Carlo experiment of Section 6
confirmed the predictions of the asymptotic theory. This experiment showed that the uncondi-
tional variance estimators have a relative bias that gets smaller as the subject and rater sample
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sizes increase, and that the associated confidence intervals should have a coverage rate close to
their nominal value of 95%.

Researchers who are only interested in the raters who participated in the experiment may
still want use the variance expressions of (1) and (3). However, many reliability studies show that
researchers have a tendency to generalize their results to bigger rater universes. The reader should
be aware that the variance estimators presented in this paper are derived under the assumption
that there is no missing rating. That is, each rater provided a rating for all subjects in the sample.
In practice, this will sometimes not be true, in which case the unconditional variance estimators
become rough approximations that may still be useful. A more satisfactory treatment of the
problem of missing rating would use the jackknife approach to variance estimation. This will be
discussed in another paper.

Appendix

A.1. Asymptotics in Finite Population Sampling

The setup for asymptotics is similar to the one often used in finite population sampling. It
was described in detail by Fuller and Isaki (1981) and Isaki and Fuller (1982). The only difference
here is that rather than using a single population of inference, as is generally the case in finite
population sampling, we have to use a finite population of subjects and a finite population of
raters as well.

This setup for asymptotics leads us to consider one sequence of finite subject populations
and another sequence of finite rater populations. Without loss of generality, we will index both
sequences by t . The two sequences {St }t≥1 (for subject populations) and {Rt }t≥1 (for rater pop-
ulations) are assumed to grow bigger and bigger as their index t increases. In other words, we
have that S1 ⊂ S2 ⊂ · · · ⊂ St ⊂ · · · and R1 ⊂ R2 ⊂ · · · ⊂ Rt ⊂ · · ·.

In addition to the assumptions defining the framework for asymptotics, we will need the
following general conditions to prove our results:

(a) ∃ν0 (0 < ν0 < 1) such that limt→∞ rt /Rt = ν0,
(b) ∃ θe (0 ≤ θe < 1) such that pe|t = θe + op(1), and
(c) ∃f0 (0 < f0 < 1) such that limt→∞ nt/Nt = f0.

where rt and nt represent, respectively, the rater sample size and the subject sample size taken
from the t th populations Rt and Ut . Similarly, Rt and Nt are, respectively, the sizes of popula-
tions Rt and Ut . The limited number of conditions needed to prove the large-sample results is
due to the fact that the variables we are dealing with are probabilities that take values between 0
and 1.

A.2. Magnitude Order of Real Variables, and Stochastic Magnitude Order of Random
Variables: the O , o, Op , and op Notations

When studying large-sample approximations in statistics, there are situations where only the
order of magnitude of certain terms is relevant. The very nature of these terms is often irrelevant,
especially when it can be established that they will converge to 0 as the sample size increases.
Special mathematical notations known as O (“big O”) and o (“little o”) or Op (“big O p”) and op

(“little o p”) are often used to characterize all terms with the same order of magnitude, or with
smaller order of magnitude compared to other simpler terms. Below is a short reminder of the
definitions of these notations.

Let (ωn)n≥1 be a sequence of numbers.
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• The notation o(ωn) (i.e. “little o” of omega n) represents any term with a magnitude
order smaller than ωn. That is the ratio o(ωn)/ωn goes to 0 as n increases. For example,√

n = o(n) because
√

n/n → 0 as n → ∞.
• O(ωn) (i.e. “big O” of omega n) represents any term with the same magnitude order

as ωn. That is the ratio O(ωn)/ωn is bounded as n increases; or there exists a constant K ,
and an integer n0 such that |O(ωn)/ωn| ≤ K for n > n0. For example, 3/

√
n + 45/n3 =

O(1/
√

n).
• op(ωn) (i.e., little o.p. of omega n) refers to any random variable whose stochastic order

of magnitude is smaller than that of ωn. That is, as n increases, the ratio op(ωn)/ωn con-
verges in probability to 0, or the probability that op(ωn)/ωn is bounded by an arbitrarily
small positive number converges to 0. Mathematically, it means ∀ε > 0, ∃nε (an integer)
such that if n > nε , then P(|op(ωn)/ωn| < ε) > 1 − ε.

• Op(ωn) refers to any random variable with the same stochastic order of magnitude as ωn.
That is, as n increases, the probability that the ratio Op(ωn)/ωn is bounded converges
to 1. Mathematically, it means ∀ε > 0, ∃Kε > 0, and an integer nε such that if n > nε ,
then P(|Op(ωn)/ωn| < Kε) > 1 − ε.

• Note that the well-known Chebychev’s inequality states that the difference between a ran-
dom variable X and its mean μ has the same stochastic order of magnitude as the standard
deviation of that random variable. According to Chebychev’s inequality, for any real num-
ber k > 0, P(|X − μ| < kσ) > 1 − 1/k2. An interesting consequence of this inequality is
that for a sequence of independent and identically distributed random variables (Xn)n≥1
with mean μ and standard deviation σ , the difference X−μ has the same stochastic order
of magnitude as 1/

√
n since the standard deviation of X is σ/

√
n. This follows from the

fact that for all ε > 0, P(
|X−μ|
1/

√
n

< σ√
ε
) > 1 − ε.

• Any sequence of random variables (Xn)n≥1 that converges in law (i.e., the sequence of the
distribution functions of the Xn’s converges to a distribution function), then that sequence
of random variables is bounded in probability.

A.3. Proof of Lemma 1

Note that pa is a multivariate function of p = (pik, i = 1, . . . , n; k = 1, . . . , q). The Taylor
series expansion of pa at P = (Pik , i = 1, . . . , n; k = 1, . . . , q) leads to the following expression:

pa = 1

n

n
∑

i=1

Pa|i +
n

∑

i=1

q−1
∑

k=1

(pik − Pik)
∂pa

∂xik

∣

∣

∣

∣

x=P

+ 1

2

n
∑

i,j=1

q−1
∑

k,l=1

(pik − Pik)(pjl − Pjl)
∂2pa

∂xik∂xjl

∣

∣

∣

∣

x=P (θ)

,

where P (θ) = θp + (1 − θ)P for some θ ∈ (0,1). We have that ∂pa/∂xik = 2r(xik − xiq)/

(n(r − 1)), ∂2pa/∂x2
ik = 4r/(n(r − 1)), and if k �= l we have ∂2pa/∂xik∂xil = 2r/(n(r − 1)).

For i �= j , ∂2pa/∂xik∂xil = 0. Thus,

pa = Pa|• + 2

n

n
∑

i=1

q
∑

k=1

Pik(pik − Pik) + A1, (8)

where A1 is given by

A1 = 2

n(r − 1)

n
∑

i=1

q
∑

k=1

Pik(pik − Pik) + r

n(r − 1)

n
∑

i=1

q
∑

k=1

(pik − Pik)
2,

and Pa|• = (Pa|1 + · · · + Pa|n)/n.
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Let us consider pe as a function of the q −1 dimensional vector x = (x1, . . . , xk, . . . , xq−1)
	

(with 0 ≤ xk ≤ 1) defined as

peγ (x) =
q

∑

k=1

g(xk) where xq = 1 −
q−1
∑

k=1

xk.

Let π̂∗
k and A2 be defined as

π̂∗
k = 1

n

n
∑

i=1

Pik and A2 = 1

2

q
∑

k=1

g′′(πk(θ)
)(

π̂k − πk

)2
.

Using a Taylor series expansion of pe in the neighborhood of π = (π1, . . . , πk, . . . , πq)	 leads
to the following expression:

pe = Pe +
q

∑

k=1

g′(πk)
(

π̂k − πk

) + A2,

= Pe +
q

∑

k=1

g′(πk)
[(

π̂k − π̂∗
k

) + (

π̂∗
k − πk

)] + A2,

= Pe + 1

n

n
∑

i=1

q
∑

k=1

g′(πk)(pik − Pik) + 1

n

n
∑

i=1

q
∑

k=1

g′(πk)(Pik − πk) + A2. (9)

Let A3 and A4 be defined as

A3 = (pa − pe)(pe − Pe)
2

(1 − Pe(θ))3
, where Pe(θ) = θpe + (1 − θ)Pe for θ ∈ (0,1),

A4 = (pe − Pe)(pa − Pa) − (pe − Pe)
2

(1 − Pe)2
.

The agreement coefficient γ̂ can be seen as a function of pe. A Taylor series expansion of γ̂ in
the neighborhood of Pe yields

γ̂ = pa − pe

1 − Pe

+ (pa − pe)(pe − Pe)

(1 − Pe)2
+ A3,

= γ + (pa − Pa|•) + (Pa|• − Pa) − (1 − γ )(pe − Pe)

1 − Pe

+ A3 + A4.

If follows from (8) and (9) that γ can be expressed as follows:

γ̂ = γ + 1

n

n
∑

i=1

λi + R, where R = A1 − (1 − γ )A2

1 − Pe

+ A3 + A4. (10)

To complete the proof of Lemma 2, we must prove that R = Op(1/n) + Op(1/r). We have
that (π̂k − πk)

2 = (π̂k − π̂∗
k )2 + (π̂∗

k − πk)
2 + 2(π̂k − π̂∗

k )(π̂∗
k − πk). It follows from the central

limit theorem that (π̂∗
k − πk)

2 = Op(1/n). Moreover, E(π̂k − π̂∗
k )2 = ERVS (π̂k − π̂∗

k |R) +
VRES (π̂k − π̂∗

k |R). After some algebra, one can establish that

E
(

π̂k − π̂∗
k

)2 = ξRξN

(1 − fn)(1 − fr)

nr

(

σ 2
k − ηk + π2

k

) + ξR

1 − fr

r

(

σ 2
k /N + ηk − π2

k

)

, (11)



KILEM LI GWET 427

where ξR = R/(R − 1), ξN = N/(N − 1), σ 2
k and ηk are defined as

σ 2
k = 1

N

N
∑

i=1

Pik(1 − Pik), ηk = 1

N2

N
∑

i=1

N
∑

j=1

P
(jk)
ik ,

P
(jk)
ik being the proportion of raters who classified subjects i and j into category k. It fol-

lows from (11) and Chebychev’s inequality that (π̂k − π̂∗
k )2 = Op(1/r). Thus, A2 = Op(1/r) +

Op(1/n).
It follows from the central limit theorem that pik − Pik = Op(1/r1/2). Therefore, one can

establish that A1 = Op(1/r3/2) + Op(1/r), A3 = Op(1/r), and A4 = Op(1/r). �

A.4. Proof of Lemma 2

The unconditional variance of λ is given by

V (λ) = ERVS (λ|R) + VRES (λ|R).

Let vector xi = pi − P i . Since λi = (γ ∗
i − γ ) + �	

i xi , the conditional variance of λ given the
sample of raters is given by

VS (λ|R) = 1 − fn

n

1

N − 1

N
∑

i=1

(

λi − �
)2, where � = 1

N

N
∑

i=1

λi and fn = n/N,

= 1 − fn

n

{

1

N − 1

N
∑

i=1

(

γ ∗
i − γ

)2 + 1

N − 1

N
∑

i=1

2
(

γ ∗
i − γ

)

�	
i xi

+ 1

N − 1

N
∑

i=1

(

�	
i xi

)2 − N

N − 1

(

1

N

N
∑

i=1

�	
i xi

)2}

.

Note that ER(xi ) = 0. Therefore,

ERVS (λ|R) = 1 − fn

n

{

S∗2
γ + 1

N − 1

N
∑

i=1

ER
(

�	
i xi

)2 − 1

N(N − 1)
ER

(

N
∑

i=1

�	
i xi

)2}

.

But, ER(�	
i xi )

2 = ER�	
i (xix

	
i )�i = �	

i VR(pi )�i . Also,

ER

(

N
∑

i=1

�	
i xi

)2

=
N

∑

i=1

N
∑

j=1

�	
i ER

(

xix
	
j

)

�j ,

=
N

∑

i=1

�	
i VR(pi )�i +

N
∑

N
∑

i �=j

�	
i COVR(pi ,pj )�j .

Therefore,

ERVS (λ|R) = 1 − fn

n

{

S∗2
γ + 1

N

N
∑

i=1

�	
i VR(pi )�i

− 1

N(N − 1)

N
∑

N
∑

i �=j

�	
i COVR(pi ,pj )�j

}

. (12)
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To obtain VR(pi ), one would note that,

VR(pik) = PikQik

r

R − r

R − 1
= 1 − fr

r

R

R − 1
PikQik,

where fr = r/R, and Qik = 1 − Pik (see Cochran, 1977). Likewise, one can establish that the
covariance of pik and pik′ for two different categories k and k′ is given by

COVR(pik,pik′) = −1 − fr

r

R

R − 1
PikPik′ .

To see this, let us define the following two random variables, εl and η
(l)
ik , for a rater l, a subject i,

and a category k:

η
(l)
ik =

{

1 if rater l classifies subject i into category k,

0 otherwise.
(13)

And εl = 1 if rater l has been selected from the rater population for inclusion in the rater sample,
and εl = 0 otherwise. It follows that

COVR(pik,pik′) = ERpikpik′ − PikPik′ ,

= 1

r2
ER

(

r
∑

l=1

r
∑

l′=1

η
(l)
ik η

(l′)
ik′

)

− PikPik′ ,

= 1

r2
ER

(

R
∑

l=1

R
∑

l′=1

η
(l)
ik η

(l′)
ik′ ER(εlεl′)

)

− PikPik′ .

Since the sampling of raters is carried out without replacement, ER(εlεl′) equals the probability
to select raters l and l′ from the rater population for inclusion in the sample. Thus, ER(εlεl′) =
r(r − 1)/[R(R − 1)]. Because the same rater cannot classify the same subject into two different
categories, η

(l)
ik η

(l)

ik′ = 0 for k �= k′. Therefore,

COVR(pik,pik′) = r − 1

rR(R − 1)

R
∑

l=1

η
(l)
ik

(

R
∑

l′ �=l

η
(l′)
ik′

)

− PikPik′ ,

= −1 − fr

r

R

R − 1
PikPik′ .

Thus,

VR(pi ) = 1 − fr

r

R

R − 1

(

diag(P i ) − P iP
	
i

)

.

Using the same technique, the covariance of pi and pj is obtained as

COVR(pi ,pj ) = 1 − fr

r

R

R − 1

(

P
(j•)
i• − P iP

	
j

)

, where P
(j•)
i• = (

P
(jl)
ik

)

1≤k≤q,1≤l≤q
.

Let �i = �	
i (diag(P i ) − P iP

	
i )�i , and �ij = �	

i (P
(j•)
i• − P iP

	
j )�j . It follows that

ERVS
(

λ|R
) = 1 − fn

n

{

S∗2
γ + 1 − fr

r

R

R − 1

(

1

N

N
∑

i=1

�i − 1

N(N − 1)

N
∑

N
∑

i �=j

�ij

)}

,

= 1 − fn

n
S∗2

γ + A.
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The second part of V (λ) is derived as

VRES (λ|R) = VR

(

1

N

N
∑

i=1

�	
i xi

)

= ER

(

1

N

N
∑

i=1

�	
i xi

)2

,

= ER

(

1

N2

N
∑

i=1

N
∑

j=1

�	
i xix

	
j �j

)

= 1

N2

N
∑

i=1

N
∑

j=1

�	
i COVR(pi ,pj )�j ,

= 1 − fr

r

R

R − 1

1

N2

N
∑

i=1

N
∑

j=1

�ij = 1 − fr

r

1

N2

N
∑

i=1

N
∑

j=1

�ij + B,

where �ii = �i .
The probabilities P

(jl)
ik and Pik can be expressed in terms of the binary variables η

(l)
ik of (13)

as

P
(jk)
ik = 1

R

R
∑

α=1

η
(α)
ik η

(α)
j l , and Pik = 1

R

R
∑

α=1

η
(α)
ik .

We have that

�ij =
q

∑

k=1

q
∑

l=1


ik
jlP
(jl)
ik −

(

q
∑

k=1


ikPik

)(

q
∑

l=1


jlPjl

)

,

= 1

R

R
∑

α=1

[(

q
∑

k=1


ikη
(α)
ik

)(

q
∑

l=1


jlη
(α)
j l

)]

−
{

1

R

R
∑

α=1

(

q
∑

k=1


ikη
(α)
ik

)}{

1

R

R
∑

α=1

(

q
∑

l=1


jlη
(α)
j l

)}

,

= 1

R

R
∑

α=1


iαi

jαj

−
(

1

R

R
∑

α=1


iαi

)(

1

R

R
∑

α=1


jαj

)

,

where αi is the category into which rater α classified subject i.
It follows that

1

N2

N
∑

i=1

N
∑

j=1

�ij = 1

R

R
∑

α=1

(

1

N

N
∑

i=1


iαi

)(

1

N

N
∑

j=1


jαj

)

−
(

1

R

R
∑

α=1


(α)

)2

,

= 1

R

R
∑

α=1


2
(α) −

(

1

R

R
∑

α=1


(α)

)2

= 1

R

R
∑

α=1

(


(α) − 
(•)
)2

,

where 
(α) is the average of all N values 
iαi
(i = 1, . . . ,N ), and 
(•) is the average of all R

values 
(α) (α = 1, . . . ,R). The proof is completed by noting that,


(α) − 
(•) = 2

1 − Pe

{

(

P (α)
a − P (•)

a

) − (1 − γ )

q
∑

k=1

[

πk

(

f
(

π
(α)
k

) − f (πk)
)]

}

,

= 2
(

γ(α) − γ (•)
)

. �
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