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OBJECTIVES The purpose of this study was to compare myocardial blood flow (MBF) and myocardial flow reserve

(MFR) estimates from rubidium-82 positron emission tomography (82Rb PET) data using 10 software packages

(SPs): Carimas, Corridor4DM, FlowQuant, HOQUTO, ImagenQ, MunichHeart, PMOD, QPET, syngo MBF, and

UW-QPP.

BACKGROUND It is unknown how MBF and MFR values from existing SPs agree for 82Rb PET.

METHODS Rest and stress 82Rb PET scans of 48 patients with suspected or known coronary artery disease were

analyzed in 10 centers. Each center used 1 of 10 SPs to analyze global and regional MBF using the different kinetic models

implemented. Values were considered to agree if they simultaneously had an intraclass correlation coefficient >0.75 and

a difference <20% of the median across all programs.

RESULTS The most common model evaluated was the 1-tissue compartment model (1TCM) by Lortie et al. in

2007. MBF values from 7 of 8 SPs implementing this model agreed best (Carimas, Corridor4DM, FlowQuant, PMOD,

QPET, syngo MBF, and UW-QPP). Values from 2 other models (El Fakhri et al. in Corridor4DM and Alessio et al. in

UW-QPP) also agreed well, with occasional differences. The MBF results from other models (Sitek et al. 1TCM in

Corridor4DM, Katoh et al. 1TCM in HOQUTO, Herrero et al. 2-tissue compartment model in PMOD, Yoshida et al.

retention in ImagenQ, and Lautamäki et al. retention in MunichHeart) were less in agreement with Lortie 1TCM

values.

CONCLUSIONS SPs using the same kinetic model, as described in Lortie et al. in 2007, provided consistent results in

measuring global and regional MBF values, suggesting that they may be used interchangeably to process data acquired

with a common imaging protocol. (J Am Coll Cardiol Img 2014;-:-–-) © 2014 by the American College of Cardiology

Foundation.
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CAD = coronary artery disease

ICC = intraclass correlation

coefficient

1TCM = 1-tissue compartment

model

LV = left ventricle

MBF = myocardial blood flow

MFR = myocardial flow reserve

RCA = right coronary artery

SP = software package
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M easuring myocardial blood flow
(MBF) in absolute terms with
positron emission tomography

(PET) is now possible in clinical routine prac-
tice (1). These measurements at rest and
under stress can be completed quickly (2,3),
and the reconstructed dynamic images can
be analyzed in a few minutes by the majority
of the available software packages (SPs) (4).
The analysis produces left ventricle (LV)
absolute MBF values measured in ml/min/g
at rest and under stress as well as the
myocardial flow reserve (MFR)—the ratio of
stress to rest MBF expressed as a unitless number.
These values provide unique information regarding
diagnosis and monitoring of coronary artery disease
(CAD), microvascular health (5), multivessel CAD (6),
and risk stratification (7). Although recent studies
have shown the diagnostic and prognostic value of
MBF quantification over the standard relative image
analysis (6,8,9), and use of the generator-produced
rubidium-82 (82Rb) (10,11) has brought MBF quantifi-
cation closer to the clinic, its integration into clinical
routine practice remains underutilized (5).

To convert imaging data to quantitative MBF
parameters, measured radioactivity concentration
values need to be transformed into milliliters of blood
per minute per gram of myocardial tissue (ml/min/g)
by applying tracer kinetic modeling to dynamic PET
images. Thus, any numerical value that any profes-
sional receives from 82Rb PET is a result of this
transformation. At least 8 different models have been
proposed (12–19) for 82Rb. Although deKemp et al.
(20) and Tahari et al. (21) had addressed the repro-
ducibility of 82Rb PET analysis methods for MBF
quantification, they had focused on a limited number
of methods; therefore, a comprehensive comparison
study was needed to analyze the current situation in
82Rb PET quantification to help establish common
and robust methods to support collaborative multi-
center clinical trials.
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The objective of the RUBY project was to compare
all currently available SPs that can analyze 82Rb PET
MBF studies. The criteria for inclusion were the
presence of the software in the peer-reviewed litera-
ture and the willingness of the development team to
collaborate according to same ground rules, including
blind analysis of the same selected patient datasets.
The 10 SPs compared in the present study were:
Carimas (22), Corridor4DM (23), FlowQuant (24),
HOQUTO (19), ImagenQ (25), MunichHeart (16), PMOD
(26), QPET (26), syngo MBF (26), and UW-QPP (18).
For further details on the SPs, please see “The
Evaluated Software Packages” section in the Online
Appendix; for the side-by-side comparison of the
packages, see Table 1 in Saraste et al. (4).

METHODS

IMAGE ACQUISITION. All 82Rb PET studies were
performed at the Department of Nuclear Medicine of
the University Hospital of Lausanne (Switzerland),
according to the routine clinical practice. The
study protocol was approved by the local ethics
committee. Written informed consent was obtained
from each patient prior to the study. Forty-eight
patients with suspected or known CAD underwent
rest and adenosine-induced stress 82Rb PET. Patients
were studied after an overnight fast and were
instructed to refrain from caffeine- or theophylline-
containing products or medications for 24 h before
the 82Rb PET study. During the study, patients were
instructed to breathe normally. For further details
about the PET image acquisition, please see the
Online Appendix.

IMAGE ANALYSIS. The reconstructed rest and stress
images were delivered to 10 facilities located in
10 centers across 7 countries. Each investigator used
1 SP and, by the rules of this project, had been blinded
to results of the image analysis of the other readers
before sharing his or her results (see Online Appendix
for details of the study design).
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TABLE 1 The 8 Kinetic Models Implemented in 10 Software Packages of RUBY-10

Retention One-Tissue Compartment Two-Tissue Compartment Axially-Distributed

Yoshida et al.
(13)

Lautamäki et al.
(16)

Sitek et al.
(17)

Lortie et al.
(14)

El Fakhri et al.
(15)

Katoh et al.
(19)

Herrero et al.
(12)

Alessio et al.
(18)

Carimas þ
Corridor4DM þ þ þ
FlowQuant þ
HOQUTO þ
ImagenQ þ þ
MunichHeart þ
PMOD þ þ
QPET þ
syngo MBF þ
UW-QPP þ þ
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In general, all of the 10 packages implemented
variations of a 1-tissue compartment model (1TCM)
(27). A total of 7 packages implemented the modifica-
tion of 1TCM suggested by Lortie et al. (14). An eighth
package (ImagenQ-Lortie) also used the Lortie et al.
(14) 1TCM; however, it used a shorter 2.5-min dynamic
sequence (8�12s, 2�27s) interpolated from the
original image data. Additionally, 1 SP—UW-QPP—
implemented an axially-distributed blood flow model
(18), and another—PMOD—used a 2-tissue-compart-
ment model (12) (Table 1). The image analysis process
in all packages consisted of image reorientation, seg-
mentation of both LV myocardium and cavity, and
tracer kinetic modeling. Several packages enabled
automatic reorientation and segmentation; others
depended on the operator to influence segmentation
of regions where modeling would be done. Please see
“The Evaluated Software Packages” section in the
Online Appendix for details of the image analysis
process.

Image analysis resulted in estimated values for
3 parameters: rest MBF, stress MBF, and MFR on
global and regional levels. Global presented the
average LV value, and regional presented values for
the 3 vascular territories in the regions of coronary
arteries: the left anterior descending, left circumflex,
and right coronary artery (RCA). The vascular terri-
tories were in agreement with the 17-segment
American Heart Association standard model (28).

STATISTICAL ANALYSIS. The large number of
models compared prohibited the use of standard ap-
proaches to measure agreement between 2 methods
(29), so a custom linear mixed model for the repeated
measures (30) was applied to the dataset. The
statistical model output included 2 main agreement
metrics—intraclass correlation coefficient (ICC) and
difference between the values from the implemented
kinetic models—both calculated pairwise. The
pairwise agreement between models was considered
sufficient if the difference was <20% of the median
across all programs and with the corresponding ICC
being $0.75. The criteria for ICC was based on
Khorsand et al. (31), and the difference was greater
than the pre-defined 20% standard. We also ex-
pressed the values as a percent of corresponding
medians to demonstrate the scale of differences.

The paired Student t test (Microsoft Excel 2013,
Redmond, Washington) was used to evaluate the
differences between hemodynamic parameters of
patients at rest and at pharmacological stress.

BIPLOT ANALYSIS. To visualize the large number of
results of the RUBY-10 comparisons, we developed a
custom biplot relating the 2 defined metrics—the
differences and the ICC values of compared pairs. In
this plot, the x-axis shows pairwise differences
between the model values and the y-axis shows
corresponding pairwise values of 1 � ICC. In this
biplot the origin (x ¼ 0 and y ¼ 0) is the point of
identity between the compared values, where there
is no difference and the intraclass correlation ¼ 1.
Thus, values further from the origin are less in
agreement: either showing increasing difference or
reduced ICC. The pre-defined criteria of agreement
were defined as a rectangular region on the biplot.
Thus, this biplot visualizes in an intuitive way our
pre-defined criteria of agreement—the pairs inside
of these borders were considered to have high
pre-defined agreement.

RESULTS

PATIENT CHARACTERISTICS AND HEMODYNAMICS.

The study population demographic and hemody-
namic characteristics are in Table 2. During the
pharmacological stress test, heart rate increased
(p < 0.001), whereas blood pressure showed a mild



TABLE 2 Patient Characteristics (N ¼ 48)

Men 35 (73)

Age, yrs 63.0 � 12.7 (33–87)

Weight, kg 79.0 � 15.3 (48–116)

Body mass index, kg/m2 27.00 � 4.78 (16.0–41.7)

Symptoms 36 (75)

Angina 28 (58)

Dyspnea 27 (56)

Family history of cardiovascular disease 14 (29)

Known CAD 24 (50)

Previous myocardial infarction 15 (31)

Received procedures 20 (42)

Coronary artery bypass graft surgery 5 (10)

Percutaneous coronary intervention 17 (35)

Hypercholesterolemia 29 (60)

Arterial hypertension 38 (79)

Diabetes mellitus 10 (21)

Currently smoking or ex-smoker 28 (58)

Hemodynamics at rest

Heart rate, beats/min 76.0 � 17.0 (49–135)

Systolic blood pressure, mm Hg 136.0 � 22.3 (94–212)

Diastolic blood pressure, mm Hg 71.0 � 13.3 (46–110)

Rate pressure product, mm/min 10,400 � 2,870 (6,000–18,900)

Hemodynamics at pharmacological stress

Heart rate, beats/min 85.0 � 15.6* (48–135)

Systolic blood pressure, mm Hg 131.0 � 21.1† (70–183)

Diastolic blood pressure, mm Hg 68.0 � 15.1† (30–115)

Rate pressure product, mm/min 11,200 � 2,870‡ (6,100–21,600)

Values are n (%) or mean � SD (range). *p < 0.001 vs. rest; †p < 0.05 vs. rest; ‡p < 0.01 vs. rest.

CAD ¼ coronary artery disease.
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decrease (p < 0.05), resulting in a rate pressure
product net increase (p < 0.01). All 48 patients—
including the 1 with 70/30 mm Hg stress blood pres-
sure—tolerated the stress test well.

ABSOLUTE VALUES OF MBF AT REST AND DURING

ADENOSINE STRESS AND MFR. Average MBF and
MFR values (Table 3) showed marked variation
between models. Differences (p < 0.0001) between
highest and lowest values for any studied parameter
were always greater than a factor of 1.5 times. For rest
MBF, the ratios between extreme values were
1.7 globally and w1.8 regionally; for stress MBF, the
ratios ranged from 1.9 globally to w2.2 regionally; and
for MFR, the ratios were 1.5 globally and ranged from
1.9 to 2.3 regionally.

AGREEMENT OF GLOBAL LV MBF MEASUREMENTS.

The biplots (Figure 1) demonstrated several consistent
patterns. The first pattern was that Lortie et al. (14)
implementations (green elements) in 8 SPs tended to
concentrate close to the origin. The second pattern
was that Katoh et al. (19) implemented in HOQUTO
(purple elements) provided results that differed
greatly from other models on all studied levels for
both MBF and MFR. The third pattern was that
Sitek et al. (17) implemented in Corridor4DM (red
elements) provided MBF values much higher than the
others, both at rest and stress. Note also that Yoshida
et al. (13) implemented in ImagenQ (yellow elements)
was within the pre-defined difference limits globally
at rest (up to 19.8% of the median), but showed higher
values for stress (up to 35.0% of the median) and for
MFR (up to 24.5%).

AGREEMENT OF REGIONAL LV MBF MEASUREMENTS.

Regional values generally showed larger differences:
up to 41.5% of the median for RCA. Also, over one-
half (60%) of ICC values did not fulfill the pre-
defined criteria for agreement. Lautamäki et al. (16)
as implemented in MunichHeart (pink elements) was
within the pre-defined limits globally for MBF and
MFR values and also regionally in the left anterior
descending and left circumflex arteries, but had
somewhat larger differences in RCA (up to 28.5%),
and almost all (97%) of the ICC values did not fulfill
the criteria of agreement.

Herrero et al. (12) implemented in PMOD (brown
elements) exhibited a pattern similar to the Lauta-
mäki model: all of the global differences were below
the pre-defined limit, as well as the regional differ-
ences except for the RCA values, which were up to
48.3% of the median, yet again almost all the ICC
values (97%) did not fulfill the criteria of agreement.

Differences using El Fakhri et al. (15) as imple-
mented in Corridor4DM (light blue elements) were
within the pre-defined limits globally and regionally,
with the exception of MFR in the RCA where the
difference was 30.0% of the median. ICC values
in 38% of comparisons were below pre-defined limits;
however, discarding the Yoshida, Lautamäki, and
Herrero models, ICC values fulfilled the agreement
criteria in 80% of remaining comparisons.

Differences between the Alessio model (18), as
implemented in UW-QPP, and the other models were
generally within the pre-defined limits, yet occa-
sionally were above: 23.5% of the median at rest and
22.5% at stress on the global level. Differences for
MFR were low, yet in RCA, the difference was 25.7%
of the median comparing to ImagenQ. Almost all
(95%) of the ICC values were >0.75.

AGREEMENT OF LV MBF MEASUREMENTS FOR

LORTIE 1TCM. Because the Lortie model (14) was the
most commonly applied model in the evaluated SPs,
specific biplots for inter-Lortie comparisons were
created and are displayed in Figure 2; red elements
demonstrate the implementations of the model in
UW-QPP (red squares) and ImagenQ (red triangles)
that were added later to the RUBY project. Globally,



TABLE 3 Myocardial Blood Flow and MFR Values

Software (First Author [Ref. #])

Global LAD LCx RCA

Rest Stress MFR Rest Stress MFR Rest Stress MFR Rest Stress MFR

Carimas (Lortie et al. [14]) 1.11 � 0.36 2.38 � 1.04 2.18 � 0.82 1.12 � 0.38 2.31 � 1.09 2.10 � 0.87 1.08 � 0.33 2.30 � 0.92 2.17 � 0.75 1.16 � 0.42 2.86 � 1.32 2.54 � 1.07

Corridor4DM (El Fakhri et al.
[15])

1.08 � 0.48 2.40 � 1.10 2.42 ± 1.16 1.13 � 0.49 2.40 � 1.07 2.32 ± 1.05 1.10 � 0.48 2.39 � 1.11 2.37 ± 1.16 1.02 � 0.50 2.46 � 1.24 2.74 ± 1.75

Corridor4DM (Lortie et al. [14]) 1.23 � 0.38 2.58 � 0.97 2.17 � 0.78 1.31 � 0.39 2.57 � 0.91 2.05 � 0.71 1.20 � 0.36 2.45 � 0.94 2.10 � 0.75 1.20 � 0.49 2.82 � 1.28 2.52 � 1.23

Corridor4DM (Sitek et al. [17]) 1.69 ± 0.61 3.57 ± 1.37 2.23 � 0.89 1.79 ± 0.63 3.55 ± 1.28 2.10 � 0.80 1.64 ± 0.59 3.41 ± 1.34 2.20 � 0.89 1.63 ± 0.70 3.81 ± 1.71 2.57 � 1.33

ImagenQ (Lortie et al. [14]) 1.22 � 0.58 2.32 � 0.99 2.02 � 0.75 1.23 � 0.58 2.35þ1.04 2.02 � 0.71 1.23 � 0.64 2.27 � 1.00 1.98 � 0.76 1.19 � 0.58 2.33 � 1.00 2.10 � 0.88

ImagenQ (Yoshida et al. [13]) 1.01 � 0.38 1.85 ± 0.67 1.93 � 0.71 1.00 ± 0.39 1.80 � 0.70 1.90 � 0.69 1.03 � 0.43 1.84 � 0.73 1.89 � 0.68 1.03 � 0.37 1.94 � 0.68 2.01 � 0.82

FlowQuant (Lortie et al. [14]) 1.08 � 0.38 2.35 � 1.05 2.29 � 0.98 1.05 � 0.39 2.29 � 1.06 2.29 � 0.99 1.13 � 0.42 2.32 � 1.02 2.29 � 0.99 1.08 � 0.39 2.48 � 1.16 2.39 � 1.13

HOQUTO (Katoh et al. [19]) 1.43 � 0.49 2.11 � 0.71 1.58 ± 0.84 1.45 � 0.28 1.66 ± 0.36 1.19 ± 0.44 1.47 � 0.32 1.64 ± 0.35 1.18 ± 0.45 1.48 � 0.32 1.67 ± 0.40 1.19 ± 0.52

MunichHeart (Lautamäki et al.
[16])

1.13 � 0.37 2.19 � 0.89 2.06 � 0.77 1.16 � 0.37 2.23 � 0.91 2.05 � 0.79 1.12 � 0.41 2.08 � 0.93 1.99 � 0.82 1.11 � 0.37 2.24 � 0.87 2.13 � 0.74

PMOD (Herrero et al. [12]) 1.15 � 0.38 2.22 � 1.18 1.98 � 0.85 1.23 � 0.47 2.34 � 1.30 1.99 � 1.01 1.23 � 0.37 2.51 � 1.45 2.06 � 0.96 0.96 � 0.40 1.79 � 1.14 2.02 � 1.18

PMOD (Lortie et al. [14]) 1.16 � 0.35 2.62 � 1.00 2.29 � 0.74 1.23 � 0.38 2.60 � 1.03 2.17 � 0.70 1.10 � 0.33 2.40 � 0.92 2.23 � 0.74 1.14 � 0.38 2.88 � 1.23 2.60 � 1.05

QPET (Lortie et al. [[14]) 1.14 � 0.30 2.51 � 0.84 2.30 � 0.75 1.20 � 0.31 2.53 � 0.87 2.18 � 0.73 1.13 � 0.29 2.38 � 0.82 2.18 � 0.70 1.06 � 0.33 2.61 � 0.92 2.61 � 1.05

syngo MBF (Lortie et al. [14]) 1.22 � 0.38 2.57 � 0.95 2.23 � 0.81 1.27 � 0.39 2.60 � 1.01 2.14 � 0.83 1.17 � 0.37 2.42 � 0.91 2.19 � 0.79 1.19 � 0.45 2.68 � 1.00 2.46 � 1.05

UW-QPP (Alessio et al. [18]) 0.97 ± 0.35 2.12 � 0.93 2.25 � 0.94 1.06 � 0.41 2.14 � 0.92 2.11 � 0.84 0.93 ± 0.32 1.96 � 0.85 2.18 � 0.92 0.90 ± 0.35 2.28 � 1.17 2.65 � 1.39

UW-QPP (Lortie et al. [14]) 1.20 � 0.37 2.42 � 0.89 2.09 � 0.76 1.30 � 0.43 2.46 � 0.87 1.96 � 0.67 1.14 � 0.34 2.22 � 0.81 2.02 � 0.75 1.10 � 0.40 2.58 � 1.13 2.48 � 1.19

Max/min ratio 1.7 1.9 1.5 1.8 2.1 1.9 1.8 2.1 2.0 1.8 2.3 2.3

Average (all models) 1.19 � 0.45 2.41 � 1.04 2.14 � 0.86 1.23 � 0.46 2.39 � 1.06 2.04 � 0.83 1.18 � 0.44 2.31 � 1.03 2.06 � 0.85 1.15 � 0.47 2.49 � 1.22 2.33 � 1.18

99% CI 1.15–1.23 2.31–2.51 2.05–2.22 1.19–1.28 2.29–2.49 1.96–2.12 1.14–1.22 2.21–2.41 1.98–2.14 1.10–1.19 2.38–2.61 2.22–2.45

Median (all models) 1.11 2.20 2.01 1.16 2.16 1.94 1.11 2.08 1.94 1.06 2.27 2.14

Interquartile range (Q3–Q1) 1.44–0.87 3.00–1.67 2.55–1.51 1.48–0.90 2.98–1.61 2.48–1.43 1.44–0.86 2.90–1.57 2.52–1.44 1.43–0.80 3.14–1.62 2.84–1.48

Values are mean � SD (n ¼ 48) unless otherwise indicated. Average, 99% confidence interval (CI), median values, and interquartile range are calculated for n ¼ 720. Minimum (Min) and maximum (Max) values in each column are in bold.

LAD ¼ left anterior descending; LCx ¼ left circumflex; MFR ¼ myocardial flow reserve; RCA ¼ right coronary artery.
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FIGURE 1 Cross-Comparison of Results From All Implemented Models in 10 Software Tools

The x-axis for rest and stress is the difference in myocardial blood flow values (ml/min/g), and for myocardial flow reserve (MFR) is unitless

ratios; the y-axis is always 1 � intraclass correlation coefficient. The x-range of the shaded green area represents �20% of the median value.

LAD ¼ left anterior descending; LCx ¼ left circumflex; RCA ¼ right coronary artery.
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all of the stress differences were well within the
pre-defined limits of agreement, <20% of the median
value, and the majority of rest differences were also
within this limit (except for the ICC values comparing
with ImagenQ-Lortie). Similar patterns were observed
regionally: the majority of stress MBF values were
well within the pre-defined limits. However, in gen-
eral, regional differences seemed to be larger in the
RCA region. Values of the largest differences between
implementations of the 1TCM of Lortie et al. (14) are
shown in Table 4.

DISCUSSION

RUBY-10 is the first and currently the only study
aimed at comparing all existing software tools—used
both in clinical cardiology and in the research
setting—for analyzing MBF and MFR with the most
widely used cardiac PET tracer: 82Rb.

The positive finding of our study is that the 1TCM
model described by Lortie et al. (14)—commonly
found in most PET analysis programs—provided re-
sults generally close enough to be used interchange-
ably, if dynamic time binning protocols are the same.
We must emphasize that without an absolute refer-
ence standard—such as microsphere data—we cannot
infer the diagnostic or quantitative accuracy of any of
the methods considered. Despite this, our results do
demonstrate that applying the same kinetic model to
the same 82Rb PET data, the received MBF and MFR
values are independent of the SP within the specified
agreement tolerances.

The negative finding is that different kinetic models
currently used in 82Rb PET produce different values
for the same PET data. The finding is not new: in 2005,
Khorsand et al. (32) found differences comparing 1TCM
with 2-tissue-compartment model for 13N-ammonia
PET. New is the magnitude of possible differences:
in the referred study; global differences were up to
13% for MBF and up to 26% for MFR, and our results
demonstrate that for 82Rb PET global differences can
be up to 90% for MBF and 50% for MFR. Regional
differences can be up to 130% for both MBF and MFR.

The causes of differences can vary. In some cases,
smoothing of the data can result in higher MBF (33)
for factor-analysis-based methods such as Sitek et al.
(17) and El Fakhri et al. (15) in Corridor4DM, and
minimal filtering is recommended for improved MBF



FIGURE 2 Cross-Comparison of Results From Implemented Lortie Models in 8 Software Tools

The x-axis for rest and stress is the difference in myocardial blood flow (MBF) values (ml/min/g), and for MFR is unitless ratios; the y-axis is

always 1 � intraclass correlation coefficient. The x-range of the shaded green area represents �20% of the median value.
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estimates. In others, the difference in prompt-gamma
corrections for 82Rb between the PET computed
tomography scanner used to perform the current
study and the PET studies used originally to develop
HOQUTO could be the cause of the difference (34).
Notwithstanding the causes, the practical implication
is clear: values of MBF or MFR presented without
reference to the kinetic model cannot be directly
compared, neither for pooling of patient data, nor for
following up the same patients.

Two metrics, derived from our statistical model,
were used to indicate the agreement—ICC and
differences between the compared MBF and MFR
values. The benefit of using ICC was clear: it avoids
the limitation of standard correlation coefficients—
often met in comparison studies—when a linear rela-
tionship is mistaken for agreement. However, like
other correlation coefficients, ICC depends on the
range of variables measured, and this can explain its
lower value for rest MBF and MFR compared with
stress. The choice of limits of agreement is critical,
and for ICC we used recommended (31) values—a
cutoff for excellent agreement at over 0.75. For the
differences, the choice of appropriate limit is not that
straightforward, and we chose to use <20% difference
in studied parameters as acceptable, as it is similar to
the test-retest repeatability of 20% to 25% for rest
MBF and MFR reported recently using 82Rb PET (35).

Increasing the number of compared models geo-
metrically increases the results, which makes the
analysis and display of these results challenging. For
the measured global and regional values, there were
2,520 differences (210 � [3 þ 9]) and 1,260 ICC values;
listing all of these values is impractical. The biplot
binds these values, and with pre-defined cutoffs
informs on the relative agreement of the model re-
sults. Therefore, the developed biplots were enabled
to handle the complexity of the data inherent in a
cross-comparison of this scale.

The analysis of a dynamic PET scan goes through
several steps—reorientation, myocardial segmenta-
tion, selection of the input function, kinetic model-
ing, and polar plot generation—each of which could
significantly affect the results. We designed our study
to simulate the clinical routine practice as much as
possible and treated the workflow inside of each SP as
a “black box” being only interested in input (the
patient PET images) and the output (the results in
milliliters [MBF] or ratio units of MFR). As all of the
studied SPs were operated either by their developers



TABLE 4 Largest Differences Between Software Packages Implementing

Lortie et al. (14)

Difference
(Absolute)*

Difference
(Percent of Median) SW Name SW Name p Value ICC

Global

Rest 0.15 13.7 C4DM FQ 0.0008 0.874

Stress 0.30 13.5 PMOD ImagenQ 0.0019 0.837

MFR 0.28 13.7 QPET ImagenQ 0.0068 0.835

LAD

Rest 0.25 22.0† C4DM FQ <0.0001 0.869

Stress 0.32 14.7 PMOD FQ 0.0020 0.892

MFR 0.33 17.0 FQ UWQPP 0.0010 0.689

LCx

Rest 0.15 13.7 ImagenQ C2 0.0016 0.533

Stress 0.22 10.8 C4DM UWQPP 0.0356 0.922

MFR 0.25 12.6 PMOD ImagenQ 0.0134 0.768

RCA

Rest 0.14 13.5 C4DM QPET 0.0039 0.854

Stress 0.56 24.5‡ PMOD ImagenQ <0.0001 0.782

MFR 0.51 24.0 QPET ImagenQ 0.0001 0.834

*Differences between MBF values are in units of ml/min/g; differences between MFR are in unitless ratios.
†In LAD there are 2 values >20% of the corresponding median, both involving FQ. ‡In RCA (both stress and MFR)
there are 3 values >20%; all 3 involve ImagenQ.

MBF ¼ myocardial blood flow; SW ¼ software; other abbreviations as in Table 3.
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or under their close supervision, we believe that the
tools were used appropriately.

STUDY LIMITATIONS. The most significant limitation
of this study is that there was no gold standard used,
and thus, no claim of quantitative accuracy of a
particular model can be inferred by these results.
Another consideration is that the ImagenQ analysis
used interpolated dynamic image frames to produce a
dataset compatible with this implementation of the
Lortie model. The shortened dynamic sequence used
by ImagenQ may tend to exaggerate any differences
from later uptake and washout frames that were used
by the other Lortie models. Last, 1 of the limitations of
the study is that 1 software tool, ImagenQ, was added
after the preliminary results had been already
received. The same approach led to inclusion of the
2 Lortie models: UW-QPP and ImagenQ, which were
implemented after receiving preliminary (study
average) results of RUBY. These decisions were made
for the sake of comprehensiveness, because it would
have been practically impossible to repeat the study
de novo, so we chose to include these analyses in the
primary results. However, these analyses were still
performed blinded to the individual results of the
other software programs.

We do not consider a limitation the fact that we
used only 82Rb data coming from 1 center, acquired
on 1 scanner, reconstructed with 1 algorithm, and so
on, because introducing these new variables into our
combinatorial study would have led to a practical
impossibility to carry out the project.

CONCLUSIONS

MBF and MFR values obtained by 82Rb PET must be
interpreted together with information on their
computational origin. The most important part of
such information may not be the software program
used to obtain these values, but rather the mathe-
matical tracer kinetic model implemented within the
software. The most widely implemented model for
82Rb PET is the 1TCM published by Lortie et al. (14)
available in 8 software tools out of the studied 10.
When different implementations of this kinetic model
are used to analyze the same data, the results appear
to be independent of the particular SP utilized. The
quantitative blood flow results agree well between
these analysis programs and may be used inter-
changeably for the benefit of large multicenter trials.
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