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Abstract

This article addresses the problem of testing the difference between two correlated
agreement coefficients for statistical significance. A number of authors have proposed
methods for testing the difference between two correlated kappa coefficients, which
require either the use of resampling methods or the use of advanced statistical mod-
eling techniques. In this article, we propose a technique similar to the classical pair-
wise t test for means, which is based on a large-sample linear approximation of the
agreement coefficient. We illustrate the use of this technique with several known
agreement coefficients including Cohen’s kappa, Gwet’s AC1, Fleiss’s generalized
kappa, Conger’s generalized kappa, Krippendorff’s alpha, and the Brenann–Prediger
coefficient. The proposed method is very flexible, can accommodate several types of
correlation structures between coefficients, and requires neither advanced statistical
modeling skills nor considerable computer programming experience. The validity of
this method is tested with a Monte Carlo simulation.
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Introduction

The purpose of this article is to present simple techniques for testing the difference

between two or more correlated agreement coefficients for statistical significance.
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We will confine ourselves to chance-corrected coefficients of agreement for nominal

scales. Several such agreement coefficients have been proposed in the literature.

Cohen (1960) proposed the kappa coefficient for two raters, and its weighted version

(Cohen, 1968). Fleiss (1971) and Conger (1980) extended Cohen’s kappa to the more

general situation involving three raters or more. Scott (1955) advocated the pi coeffi-

cient for two raters. Although Fleiss (1971) introduced his multiple-rater agreement

coefficient as a generalized kappa coefficient, it actually generalizes Scott’s pi coef-

ficient. Conger’s coefficient on the other hand is a genuine extension of kappa to

multiple raters. As a matter of fact, Conger’s multiple-rater coefficient reduces to

Cohen’s kappa when the number of raters is 2. Many of these coefficients are known

to be vulnerable to the paradoxes described by Cicchetti and Feinstein (1990), where

agreement coefficients yield a low value when agreement is known to be high. Gwet

(2008a) introduced the AC1 coefficient as a paradox-resistant alternative agreement

coefficient to remediate this issue. The AC1 and its weighted version known as

AC2, as well as many other coefficients are extensively discussed in Gwet (2014).

Other interesting agreement coefficients include those proposed by Brennan and

Prediger (1981) and Krippendorff (1970).

The motivation behind the study of correlated agreement coefficients stems from

various practical situations. As an example, consider a group of raters who must rate

the same subjects on two occasions. The two occasions may represent one rating ses-

sion before the raters receive a formal training, and another rating session after the

training. To evaluate the effectiveness of the training program, the researcher may be

interested in testing the difference between the two agreement coefficients for statis-

tical significance. If the raters were to rate two distinct groups of subjects on both

occasions, then the resulting agreement coefficients would be uncorrelated, and test-

ing their difference for statistical significance would be trivial. In case of uncorre-

lated agreement coefficients, the variance of the coefficients’ difference equals the

sum of the two variances. Therefore, the ratio of the difference to the square root of

its variance follows approximately the standard normal distribution, and can be used

for significance testing. However, the variance of the difference between two corre-

lated coefficients involves a covariance term that is often problematic.

Other practical situations where the problem of correlated agreement coefficients

may arise include the comparison of several raters or groups of raters to an expert

whose ratings represent the gold standard. Comparing each rater to the same gold

standard based on the same group of subjects will result in a series of correlated coef-

ficients. A researcher may want to know if there is any statistically significant differ-

ence among them. If several correlated coefficients are available, one may perform

pairwise comparisons, and a global comparison involving all coefficients in a way

that is similar to the analysis of variance (ANOVA). Several known studies prompted

the investigation of correlated agreement coefficients. For example, Oden (1991)

reported ophthalmologic data where two raters rated both eyes of 840 human subjects

for the presence or absence of geographic atrophy. Baker, Freedman, and Parmar
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(1991) describe a study of two pathologists who assessed 27 patients for the presence

or absence of dysplasia.

The problem of testing correlated agreement coefficients has already been

addressed by several authors, most of whom confined themselves to the kappa coeffi-

cient and to the case where the number of raters is limited to 2. McKenzie et al.

(1996) proposed a resampling method that uses several bootstrap samples to quantify

the variance of the difference between two correlated kappas. This method was later

expanded by Vanbelle and Albert (2008) to compare the homogeneity of several cor-

related kappa coefficients. Williamson, Lipsitz, and Manatunga (2000) recommended

an approach based on generalized estimating equations of second order, while

Barnhart and Williamson (2002) used the least-squares approach to model correlated

kappa coefficients as functions of carefully selected categorical covariates.

Resampling methods are computationally intensive, but provide adequate results

once a computer program implementing them is made available, and the number of

bootstrap samples is sufficiently large. The main drawback of resampling methods is

their inability to assist at the planning stage of an interrater reliability experiment

aimed at testing correlated coefficients for statistical significance. Data available

from prior studies cannot be used. The other approaches based on theoretical models

require an adequate statistical model to be built, which is often time-consuming, and

requires considerable statistical expertise that many researchers may not have.

In the next section, we propose simple close equations that resolve the problem of

correlated coefficients, and which require neither resampling nor the development of

theoretical models. The proposed methods are general and versatile, and can be used

to analyze correlated coefficients between overlapping groups of raters, or between

two rounds of ratings produced by the same group of raters on two occasions. We

provide expressions that can also be used to determine the optimal number of sub-

jects required to achieve a desired test power, particularly when information from

prior studies is available.

The Proposed ‘‘Linearization Method’’

The pairwise t test for the mean is one of the most basic statistical tests and involves

testing the difference between two correlated sample means for statistical signifi-

cance. These two sample means are generally evaluated using the same sample of

subjects at two different points in time. The simplicity of this test stems from the lin-

ear nature of the sample mean, which makes the difference between two means iden-

tical to the mean of the differences calculated at the sample unit level. Therefore,

computing the variance of the difference between two means obtained from a paired

sample amounts to computing the variance of another sample mean using the stan-

dard variance formula for means. This is how the pairwise t test is implemented with-

out any need to compute the covariance between two correlated means.

Unfortunately, most agreement coefficients are not linear statistics. The difference

between two correlated agreement coefficients does not reduce to a simple
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expression, and calculating its variance requires the evaluation of a complex covar-

iance term. Our proposed approach, which we will refer to as the ‘‘linearization

method,’’ consists of deriving a large-sample approximation of the agreement coeffi-

cient with a linear statistic and using the linear approximation in the same way the

sample mean is used in the pairwise t test. If the linear approximation includes all

the ‘‘relevant’’ terms, then it results in a statistical procedure that is valid even for

subject samples of moderate sizes. We will demonstrate the validity of this procedure

with a Monte Carlo experiment to be presented later.

To fix ideas, suppose that we want to test the difference 1=�x2 � 1=�x1 between two

inverses of sample means calculated on two occasions based on the same sample of

size n. Testing this difference for statistical significance requires the knowledge of its

sampling distribution. In this particular case, this sampling distribution is unknown.

One can assume however that as the sample size n increases, the two sample means

�x1 and �x2 converge toward two parameters m1 and m2 respectively. Using the first-

order Taylor series approximation of the inverse of the sample mean, one can say that

for a large sample, 1=�x1 ’ 1=m1 � (�x1 � m1)=m2
1, and 1=�x2 ’ 1=m2 � (�x2 � m2)=m2

2.

Therefore, the difference between both inverses is,

1=�x2 � 1=�x1 ’ 1=m2 � 1=m1 +
1

n

Xn

i = 1

di, ð1Þ

where di = (x
(1)
i � m1)=m2

1 � (x
(2)
i � m2)=m2

2. Now, the difference between the two

inverse means is expressed as a linear function of the di‘s, and its approximate var-

iance is that of the sample mean �d. It follows from the central limit theorem that the

ratio of the difference between the inverse means to its standard error follows the

standard Normal distribution for large sample sizes. Note that in practice, when eval-

uating di one replaces m1 and m2 with their respective estimates �x1 and �x2. We will

start the description of our method in the following section with Fleiss’s generalized

kappa coefficient, followed by Krippendorff’s alpha, Cohen’s kappa, Gwet’s AC1,

and the Brennan–Prediger coefficient. A detailed walkthrough example is presented

in Appendix B showing step by step how the new method can be implemented with

actual data using Gwet’s AC1 coefficient. The reader may repeat the same approach

with other agreement coefficients.

Fleiss’s Generalized Kappa Coefficient

Let us consider consider the generalized kappa statistic of Fleiss (1971) often used to

quantify the extent of agreement among multiple raters. It is formally defined as

follows:

k̂F = (pa � pe)=(1� pe), ð2Þ

where pa and pe are respectively the percent agreement, and the percent chance

agreement. The percent agreement is defined as,
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pa =
1

n

Xn

i = 1

pa ij , where pa ij =
Xq

k = 1

rik(rik � 1)

r(r � 1)
ð3Þ

with n representing the number of subjects, r the number of raters, q the number of

categories, and rik the number of raters who classified subject i into category k.

Likewise, the percent chance agreement is given by

pe =
Xq

k = 1

p2
k , where pk =

1

n

Xn

i = 1

rik

r
: ð4Þ

Note that the percent chance agreement pe can be rewritten as

pe =
1

n

Xn

i = 1

peji, where peji =
Xq

k = 1

pkrik=r: ð5Þ

Let us consider the quantity kH

Fji defined by

kH

Fji = kFji � 2(1� k̂F)(peji � pe)=(1� pe), ð6Þ

where kFji = (paji � pe)=(1� pe). It appears that Fleiss’s generalized kappa of equa-

tion (2) represents the arithmetic mean of the kH

Fji values. Now suppose that the same

group of r raters rate the same group of n subjects on two different occasions labeled

as (1) and (2). These two rounds of rating will yield two values for Fleiss’s kappa

named k̂
(1)
F and k̂

(2)
F , the difference of which should be tested for statistical signifi-

cance. The null and alternative hypotheses considered are expressed as follows:

H0 : k
(2)
F = k

(1)
F = kF,

H1 : k
(2)
F 6¼ k

(1)
F :

�
ð7Þ

In Equation (7), kF represents the parameter being estimated by k
(1)
F and k

(2)
F , and

is also referred to as the estimand. Our proposed procedure consists of implementing

the following steps:

� Compute the n differences di = k
H(2)

Fji � k
H(1)

Fji associated with the n subjects

being rated using Equation (6). Note that the average �d of the di values equals

the difference k̂
(2)
F � k̂

(1)
F between the two kappa coefficients.

� Compute the variance v(�d) of the mean difference using the following stan-

dard formula:

v(�d) =
1

n(n� 1)

Xn

i = 1

(di � �d)2:

� Compute the test statistic T given by,
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T =
k̂

(2)
F � k̂

(1)
Fffiffiffiffiffiffiffiffi

v(�d)
p : ð8Þ

� Under the null hypothesis H0, T follows approximately the standard normal

distribution. If the significance level of the test is a then the null hypothesis

will be rejected in favor of the alternative H1 if the absolute value of T

exceeds the critical value ca representing the (1� a=2)th percentile of the

standard normal distribution.

This procedure is simple and can be used with any agreement coefficient, provided

one has its linear approximation based on an expression similar to Equation (6).

Since Fleiss’ coefficient generalizes the pi coefficient proposed by Scott (1955)

for two raters, researchers working on correlated Scott’s coefficients for two raters

can use the test proposed in this section.

Let us see why this procedure is expected to work. When the number of subjects

is large, the agreement coefficients k̂
(1)
F and k̂

(2)
F converge to their respective limit val-

ues k
(1)
F and k

(2)
F . Likewise, the two chance agreement probabilities p(1)

e , and p(2)
e asso-

ciated with the two occasions will tend to their limit values. Therefore, di can be seen

as a variable that solely depends on subject i, and the difference k̂
(2)
F � k̂

(1)
F can then

be written as the average of the di values plus a reminder term whose stochastic order

of magnitude is smaller than 1=
ffiffiffi
n
p

. Consequently, v(�d) can be seen as the large-

sample approximation of the variance of k̂
(2)
F � k̂

(1)
F . The central limit theorem allows

us to conclude that the proposed statistic follows the standard normal distribution. A

rigorous mathematical treatment of the asymptotics is possible using techniques simi-

lar to those discussed by Gwet (2008b).

The Special Case of Two Raters: Scott’s pi Coefficient. As mentioned earlier, Fleiss’s gen-

eralized kappa reduces to Scott’s pi coefficient when the number of raters is 2. To test

the difference between two correlated Scott’s coefficients for statistical significance

Equation (6) is still used with some simplifications. The percent agreement associated

with subject i becomes paji = ei where ei is a 0/1 dichotomous variable taking value 1

if both raters agree on subject i’s membership category, and 0 otherwise. The percent

chance agreement on subject i becomes,

peji =
Xq

k = 1

pk ½e(1)
ik + e(2)

ik �=2,

where e(1)
ik is a dichotomous variable that takes value 1 when rater 1 classifies subject

i into category k, and 0 otherwise. Variable e(2)
ik is defined the same way with respect

to rater 2. Moreover, pk = (pk + + p + k)=2 with pk + and p + k representing the percent

of subjects classified into category k by raters 1 and 2, respectively.
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Krippendorff ’s Alpha Coefficient

Another agreement coefficient often used in the field of content analysis is known as

Krippendorff’s alpha (see Krippendorff, 1970). This coefficient is similar to Fleiss’s

generalized kappa, and is therefore briefly discussed in this section. Assuming that

there is no missing ratings (i.e., each rater has rated all subjects),1 this coefficient is

defined as follows:

baK = (pH

a � pe)=(1� pe), where pH

a = ½1� 1=(nr)�pa + 1=(nr), ð9Þ

and pa and pe are given by equations (3) and (4). For the purpose of testing the dif-

ference between two correlated Krippendorff’s alpha coefficients, one could express

alpha as the mean of the aH

kji values defined as follows:

aH

Kji = aKji � (1� âK )(peji � pe)=(1� pe), ð10Þ

where aKji = (pH

aji � pe)=(1� pe), and pH

aji = ½1� 1=(nr)�paji + 1=(nr). Note that paji
and peji are both defined by Equations (3) and (5) respectively.

In the next section, we will show how testing the difference between two corre-

lated kappa coefficients can be done.

The Kappa Coefficient

The kappa coefficient was introduced by Cohen (1960), and later generalized to the

case of multiple raters by Conger (1980). Note that unlike Fleiss’s generalized kappa,

which reduces to Scott’s pi for two raters, Conger’s coefficient represents a more

‘‘natural’’ generalization of Cohen’s kappa, since it reduces to it when the number of

raters is 2. Consequently, we will discuss how the difference between two correlated

Conger coefficients can be tested for statistical significance. The proposed test will

remain valid for any number of raters, including the case of two raters that was the

focus of Cohen (1960).

Consider an interrater reliability experiment where r raters classify n subjects into

one of q possible categories. Let pgk be the proportion of subjects that rater g classi-

fied into category k, and �p + k the average proportion of subjects classified into cate-

gory k per rater. Conger’s generalized kappa is defined as follows:

k̂C =
pa � pe

1� pe

, where

pa =
1

n

Xn

i = 1

Xn

k = 1

rik(rik � 1)

r(r � 1)
,

pe =
Xq

k = 1

(�p2
+ k � s2

k=r),

8>>>><
>>>>:

ð11Þ

with s2
k being the variance of the proportions pgks within category k. More formally,

s2
k is given by:
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s2
k =

1

r � 1

Xr

g = 1

(pgk � �p + k)2: ð12Þ

For the purpose of testing the difference between two correlated Conger’s agreement

coefficients for statistical significance, we will use a large-sample linear approxima-

tion that expresses Conger’s coefficient as an average of the kH

Cji values, where kH

Cji is

given by

kH

Cji = kCji � 2(1� k̂C)(peji � pe)=(1� pe), ð13Þ

where

� kCji = (paji � pe)=(1� pe), paji being defined by Equation (3).
� peji is defined as follows:

peji =
1

r(r � 1)

Xr

g = 1

Xq

k = 1

d
(i)
gk(r�p + k � pgk),

where d
(i)
gk is a dichotomous variable that equals 1 if rater g classifies subject i into

category k, and equals 0 otherwise.

When testing the difference between two Conger’s coefficients for statistical sig-

nificance, you would compute kH

Cji of Equation (13) for each subject i twice. If the

rating of n subjects was performed on two occasions, then k
H(1)

Cji and k
H(2)

Cji will be cal-

culated for each subject i before applying the same testing procedure discussed in the

previous section. When calculating k
H(1)

Cji based on equation (13), you will need to

compute k̂C and pe as shown in Equation (11) using occasion-one data only, and

repeat the same process with occasion-two ratings.

The Special Case of Two Raters: Cohen’s Kappa. As previously indicated, Cohen’s kappa

(using two raters) is a special case of Conger’s generalized agrement coefficient of

Equation (11). Therefore, when testing the difference between two correlated kappa

coefficients, you still need to use Equation (13). For two raters, paji = ei. Moreover,

peji the percent chance agreement associated with subject i, will be expressed as

follows:

peji =
Xq

k = 1

½e(1)
ik p + k + e(2)

ik pk + �=2:

Gwet’s AC1 Coefficient

Gwet (2008a) introduced the AC1 coefficient as a paradox-resistant alternative to

Cohen’s kappa coefficient. Its weighted version known as AC2 is recommended for
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analyzing ordinal, interval, and ratio data as discussed in Gwet (2014). Once again,

we consider an interrater reliability experiment involving r raters who must rate n

subjects by classifying them into one of q possible categories. The AC1 coefficient

is defined as follows:

k̂G =
pa � pe

1� pe

, ð14Þ

where the percent agreement pa is given by Equation (3), and the percent chance

agreement pe given by

pe =
1

q� 1

Xq

k = 1

pk(1� pk): ð15Þ

The probability pk that a randomly-selected rater classifies a randomly selected sub-

ject into category k is defined in Equation (4).

In order to test the difference between two correlated AC1 coefficients for statisti-

cal significance, we recommend expressing it as an average of the kH

Gji’s where kH

Gji is

given by

kH

Gji = kGji � 2(1� k̂G)(peji � pe)=(1� pe), ð16Þ

with kGji = (paji � pe)=(1� pe), and peji given by

peji =
1

q� 1

Xq

k = 1

(1� pk)rik=r:

If two AC1 coefficients are correlated due to raters rating the same group of sub-

jects on two occasions, then for each subject i one needs to compute the subject-level

differences di = k
H(2)

Gji � k
H(1)

Gji between the AC1 coefficients calculated on each of the

two occasions (1) and (2), and use the same procedure previously described for

Fleiss’s generalized kappa. Two AC1 coefficients can also be correlated because

they were calculated based on two overlapping groups of raters who rated the same

subjects. In this case, k
H(1)

Gji and k
H(2)

Gji will represent the coefficients associated with

each group of raters.

The Special Case of Two Raters. When analyzing two correlated AC1 coefficients

based on two raters only, one could use a simplified version of Equation (16). The

percent agreement associated with subject i remains the same and given by paji = ei.

As for the percent chance agreement associated with subject i, it is given by,

peji =
1

q� 1

Xq

k = 1

(1� pk)½e(1)
ik + e(2)

ik �=2
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One may find a detailed walkthrough example in Appendix B that shows step by

step how the linearization method is implemented with actual data.

Brennan–Prediger Coefficient

Brennan and Prediger (1981) proposed a simple chance-corrected agreement coeffi-

cient, which generalizes to multiple raters and multiple categories, the G-index previ-

ously proposed by Holley and Guilford (1964) for two raters and two categories.

What is known as the Holley–Guilford G-index was previously proposed indepen-

dently by various authors under different names. Among them are Guttman (1945),

Bennett, Alpert, and Goldstein (1954), and Maxwell (1977). For an interrater reliabil-

ity experiment involving r raters who classify n subjects into one of q possible cate-

gories, the Brennan-Prediger coefficient is given by

k̂BP =
pa � 1=q

1� 1=q
, ð17Þ

where the percent agreement pa is defined by Equation (3), and the percent chance

agreement is a constant representing the inverse of the number of categories.

For the purpose of testing the difference between two correlated Brennan-Prediger

agreement coefficients, one would consider k̂BP as the average of kBPji values defined

for each subject i as

kBPji = (paji � 1=q)=(1� 1=q): ð18Þ

Monte Carlo Simulation

In this section, we like to determine the extent to which the proposed procedure

works for small to moderately large samples. The linchpin of our linearization

method is Equation (8). We will have demonstrated that this method works if under

the null hypothesis the test statistic of Equation (8) follows the standard normal dis-

tribution. The conventional way of verifying that this test statistic follows the stan-

dard normal distribution has been to simulate a large number of samples under the

null hypothesis, and to establish that the hypothesized difference of 0 between the

two agreement levels under comparison falls inside the 95% confidence interval of

k̂
(2)
F � k̂

(1)
F approximately 95% of the times. That is, the following condition is

expected to be satisfied about 95% of the times.

(k̂
(2)
F � k̂

(1)
F )� 1:96

ffiffiffiffiffiffiffiffi
v(�d)

q
� 0 � (k̂

(2)
F � k̂

(1)
F ) + 1:96

ffiffiffiffiffiffiffiffi
v(�d)

q
ð19Þ

In our Monte Carlo experiment, we have considered three raters 1, 2, and 3 who

must assign subjects into one of q categories with q taking values 2, 3, 4, and 5. Our

problem is to test for statistical significance, the difference k̂13 � k̂12 between the

extent of agreement among raters 1 and 3 on one hand, and the extent of agreement
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among raters 1 and 2 on the other. These two agreement coefficients are correlated

since they have rater 1 in common.

For a given ‘‘true’’ agreement level k, and a given sample size n, we generated

10,000 data sets (a data set contains 3 columns of n ratings each) under the null

hypothesis H0 : k13 = k12 = k, then computed for each dataset the 95% confidence

interval associated with the estimated difference k̂13 � k̂12 before determining

whether or not the confidence interval includes the hypothetical difference 0 as in

Equation (19). We expect the coverage rate based on all 10,000 data sets to get closer

to 0.95 as the sample size n increases. Our simulation was repeated for 3 ‘‘true’’

agreement levels k = 0:5, 0:65, 0:85, for 7 sample sizes n = 10, 20, 30, 40, 50, 80,

100, and for 4 values of the number of categories q = 2, 3, 4, and 5. We use a single

value for the prevalence rate of pr = 0:75. We define prevalence as the propensity for

two raters to agree on the first category based solely on subjects where agreement is

known to have occurred. Simulations not reported here indicated that the prevalence

rate did not affect the interval coverage rate much. Hence, the use of a single preva-

lence value.

To generate a data set (made up of three series of ratings for the three raters) for a

given ‘‘true’’ agreement level k, a sample size n, and a prevalence rate pr, we pro-

ceeded as follows:

� We generated two uniform random numbers U1 and U2 between 0 and 1.
� If U1 � k then there must be an agreement among all three raters. If U2 � pr

then all 3 raters are assigned value 1 (the first category); otherwise they are all

assigned a randomly chosen category among the remaining q� 1 categories,

2, . . . , q.
� If U1 . k then the ratings from all three raters must be random. In this case,

we generated 3 additional uniform random variables V1, V2, and V3 between

0 and 1 for the 3 raters 1, 2, and 3. These variables is used to randomly assign

one of the q categories to each rater.

These three steps were repeated n times to obtain one data set, n representing the

number of subjects or the sample size. A total of 10,000 such datasets were created

to complete the Monte Carlo experiment.

The program implementing this Monte Carlo experiment was written in SAS using

the SAS Macro language and some data step programming.

The Results

The two agreement coefficients associated with raters {1, 3} (k̂13) and with raters {1,

2} (k̂12) are correlated. To verify this, we considered two agreement coefficients

(Cohen’s kappa, and Gwet’s AC1), and the situation where the number of categories

is 3, the ‘‘true’’ agreement coefficient k = 0:65, and a prevalence rate of 0.95. We then

calculated the Monte Carlo variance of the difference between coefficients as well as

Gwet 11

 by guest on July 29, 2015epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


the sum of variances associated with the individual coefficients for various sample

sizes (n = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100). The results depicted in Figure 1

show that the variance of the difference is always smaller that the sum of the var-

iances. This proves the existence of a positive correlation between k̂13 and k̂12; a clear

indication that our Monte-Carlo experiment has created a scenario where two corre-

lated agreement coefficients must be tested. The gap between the continuous and the

dotted curves decreases as the sample size increases. It is the case because all var-

iances decrease with larger sample sizes.

Note that each data set d produced an agreement coefficient k̂(d), and the Monte

Carlo variance is calculated as follows:

VMC(k̂) =
1

10, 000

X10, 000

d = 1

(k̂(d) � �̂k(�))2, ð20Þ

where �̂k(�) is the average of all 10,000 estimated coefficients k̂(d), d = 1, . . . , 10, 000.

The Monte Carlo based variance of the difference k̂13 � k̂12 is calculated the same

way.

Tables 1 through 4 show the confidence interval coverage rates for various agree-

ment coefficients, by agreement level and by sample size, when prevalence rate is

set to 0.75. Each of the 4 tables is associated with a particular number of categories

(q = 2, 3, 4, and 5 for Tables 1, 2, 3, and 4 respectively).
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Figure 1. Comparison of the variance of the difference between coefficients and the sum
of the coefficient variances for the AC1 and Kappa coefficients for k = 0:65, pr = 0:95, and
q = 3.

12 Educational and Psychological Measurement

 by guest on July 29, 2015epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


Table 1. Coverage Rates of 95% Confidence Intervals When Prevalence Rate is 0.75 and the
Number of Categories q = 2.

Sample size (n)

ka Agreement coefficient 10 20 30 40 50 80 100

0.50 Cohen’s kappa 0.864 0.925 0.934 0.943 0.937 0.945 0.943
Scott’s pi 0.855 0.933 0.936 0.945 0.938 0.946 0.943
Gwet’s AC1 0.926 0.946 0.945 0.950 0.948 0.951 0.949
Brennan–Prediger 0.859 0.936 0.928 0.945 0.946 0.948 0.945
Krippendorff’s alpha 0.872 0.932 0.935 0.944 0.938 0.946 0.942

0.65 Cohen’s kappa 0.796 0.924 0.934 0.941 0.942 0.949 0.942
Scott’s pi 0.793 0.933 0.935 0.942 0.943 0.949 0.943
Gwet’s AC1 0.852 0.947 0.948 0.950 0.951 0.954 0.949
Brennan–Prediger 0.809 0.940 0.932 0.948 0.955 0.951 0.943
Krippendorff’s alpha 0.808 0.933 0.934 0.942 0.942 0.949 0.942

0.85 Cohen’s kappa 0.521 0.772 0.886 0.924 0.937 0.945 0.946
Scott’s pi 0.523 0.774 0.887 0.924 0.937 0.946 0.946
Gwet’s AC1 0.555 0.781 0.895 0.932 0.946 0.952 0.952
Brennan–Prediger 0.547 0.780 0.887 0.924 0.941 0.952 0.952
Krippendorff’s alpha 0.542 0.775 0.886 0.924 0.937 0.946 0.947

ak = hypothesized agreement level, representing the nominal percent of subjects on which the raters

agree for cause, as opposed to by chance.

Table 2. Coverage Rates of 95% Confidence Intervals When Prevalence Rate Is 0.75, and
the Number of Categories q = 3.

Sample size (n)

ka Agreement coefficient 10 20 30 40 50 80 100

0.50 Cohen’s kappa 0.899 0.921 0.927 0.939 0.941 0.943 0.947
Scott’s pi 0.907 0.925 0.930 0.940 0.943 0.943 0.947
Gwet’s AC1 0.958 0.946 0.943 0.947 0.949 0.949 0.951
Brennan–Prediger 0.849 0.935 0.925 0.944 0.951 0.945 0.950
Krippendorff’s alpha 0.920 0.928 0.931 0.940 0.942 0.943 0.947

0.65 Cohen’s kappa 0.857 0.930 0.935 0.939 0.940 0.946 0.944
Scott’s pi 0.863 0.935 0.938 0.942 0.941 0.947 0.945
Gwet’s AC1 0.916 0.962 0.951 0.952 0.950 0.950 0.950
Brennan–Prediger 0.775 0.933 0.936 0.950 0.954 0.948 0.946
Krippendorff’s alpha 0.876 0.938 0.938 0.941 0.940 0.944 0.943

0.85 Cohen’s kappa 0.605 0.859 0.930 0.951 0.956 0.949 0.949
Scott’s pi 0.607 0.861 0.933 0.952 0.957 0.950 0.950
Gwet’s AC1 0.647 0.875 0.942 0.959 0.962 0.956 0.957
Brennan–Prediger 0.500 0.744 0.856 0.915 0.936 0.951 0.955
Krippendorff’s alpha 0.631 0.863 0.936 0.953 0.957 0.950 0.949

ak = hypothesized agreement level, representing the nominal percent of subjects on which the raters

agree for cause, as opposed to by chance.
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Table 3. Coverage Rates of 95% Confidence Intervals When Prevalence Rate is 0.75, and
the Number of Categories q = 4.

Sample size (n)

ka Agreement coefficient 10 20 30 40 50 80 100

0.50 Cohen’s kappa 0.916 0.932 0.930 0.938 0.942 0.941 0.945
Scott’s pi 0.922 0.935 0.933 0.940 0.944 0.941 0.946
Gwet’s AC1 0.968 0.959 0.943 0.948 0.950 0.948 0.951
Brennan–Prediger 0.821 0.942 0.932 0.949 0.955 0.945 0.948
Krippendorff’s alpha 0.925 0.936 0.933 0.938 0.942 0.940 0.944

0.65 Cohen’s kappa 0.888 0.938 0.938 0.940 0.942 0.945 0.941
Scott’s pi 0.897 0.942 0.941 0.942 0.942 0.946 0.942
Gwet’s AC1 0.942 0.971 0.957 0.951 0.952 0.953 0.946
Brennan–Prediger 0.726 0.914 0.940 0.949 0.953 0.952 0.942
Krippendorff’s alpha 0.904 0.946 0.942 0.939 0.942 0.944 0.939

0.85 Cohen’s kappa 0.652 0.886 0.948 0.961 0.964 0.949 0.946
Scott’s pi 0.656 0.888 0.950 0.964 0.965 0.950 0.946
Gwet’s AC1 0.690 0.901 0.962 0.971 0.970 0.955 0.950
Brennan–Prediger 0.438 0.685 0.809 0.881 0.919 0.945 0.948
Krippendorff’s alpha 0.677 0.891 0.954 0.966 0.965 0.950 0.945

ak = hypothesized agreement level, representing the nominal percent of subjects on which the raters

agree for cause, as opposed to by chance.

Table 4. Coverage Rates of 95% Confidence Intervals When Prevalence Rate is 0.75, and
the Number of Categories q = 5.

Sample size (n)

ka Agreement coefficient 10 20 30 40 50 80 100

0.50 Cohen’s kappa 0.923 0.935 0.932 0.936 0.940 0.945 0.948
Scott’s pi 0.931 0.940 0.933 0.937 0.940 0.945 0.948
Gwet’s AC1 0.976 0.962 0.943 0.946 0.947 0.949 0.952
Brennan–Prediger 0.786 0.931 0.932 0.948 0.952 0.947 0.949
Krippendorff’s alpha 0.928 0.937 0.932 0.935 0.938 0.944 0.945

0.65 Cohen’s kappa 0.897 0.948 0.944 0.939 0.937 0.942 0.948
Scott’s pi 0.903 0.951 0.946 0.940 0.937 0.942 0.948
Gwet’s AC1 0.946 0.979 0.961 0.953 0.950 0.951 0.953
Brennan–Prediger 0.678 0.887 0.930 0.946 0.948 0.952 0.952
Krippendorff’s alpha 0.907 0.951 0.943 0.939 0.935 0.941 0.946

0.85 Cohen’s kappa 0.649 0.901 0.962 0.972 0.973 0.954 0.948
Scott’s pi 0.653 0.903 0.962 0.973 0.974 0.954 0.949
Gwet’s AC1 0.685 0.914 0.971 0.982 0.980 0.958 0.953
Brennan–Prediger 0.388 0.624 0.766 0.848 0.900 0.937 0.946
Krippendorff’s alpha 0.673 0.904 0.965 0.975 0.972 0.953 0.947

ak = hypothesized agreement level, representing the nominal percent of subjects on which the raters

agree for cause, as opposed to by chance.
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It appears from all four tables that when the agreement level is low (e.g., k = 0:5)

the simulated interval coverage rate is reasonably close to its nominal value of 0.95

for sample sizes as small as 20. The AC1 coefficient yields a good coverage rate even

when the sample is 10. However, when the agreement level increases then a larger

sample size becomes necessary to achieve an acceptable coverage rate. For example,

if the agreement level is 0.85 and the number of categories is 2, then only a sample

size of 40 will produce an acceptable coverage rate.

As the number of categories increases from 2 to 5, the coverage rate of all agree-

ment coefficients for a fixed sample size appears to increase noticeably for smaller

sample sizes when the agreement level is high (e.g., 0.85), except the Brenann–

Pediger coefficient whose coverage rate deteriorates instead. The considerable

decrease of the coverage rate associated with the Brenann-Prediger coefficient is

essentially due to a dramatic underestimation of its variance for small and

moderately-large samples. The estimated variance of the Brenann-Prediger coeffi-

cient equals 0 whenever both pairs of raters (1, 2), and (1, 3) agree or disagree on

the exact same subjects. The opportunity of this happening increases with the

number of categories. Other authors have found the use of a fixed percent chance

agreement 1=q as in the Brenann–Prediger coefficient to be problematic (see

Cousineau & Laurencelle, 2015). The increase in coverage rate observed with the

other coefficients on small sample sizes appears to be the result of an overstate-

ment of their variances due to some categories not always being represented in

certain small samples.

Investigating ‘‘Systematic’’ Disagreement. We also investigated the confidence interval

coverage rates in situations where there is a ‘‘systematic’’ disagreement among raters.

The experiment was set up in such a way that three raters randomly assign subjects

to categories according to the predetermined classification probabilities defined in

Table 5. For example, when the number of categories is 3 then rater 1 classifies a

subject into category 1 with probability 2/3, and into categories 2 or 3 with the

same probability of 1/6. It follows that all three raters are expected to classify the

majority of subjects into different categories with only a few agreements possibly

occurring by pure chance. The classification probabilities associated with the num-

ber of categories of 4, and 5 are also defined in Table 5 and will produce similar

systematic disagreement among the three raters. The results of this experiment are

shown in Table 6.

Table 6 shows a reasonably good interval coverage rate for sample sizes as small

as 20. Even when the sample size is 10, most agreement coefficients still yield an

interval coverage rate that is over 90%. Therefore, the linearization method for test-

ing correlated agreement coefficients produces satisfactory results when there is sys-

tematic disagreement among raters.

Linearization Method Versus the Bootstrap Method. For the sake of comparing our new

linearization method to an existing method, we conducted a Monte Carlo experiment
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where the linearization method and the bootstrap method suggested by McKenzie et al.

(1996) are compared. The same five agreement coefficients previously inverstigated are

used again in this experiment, which was repeated for each of the three agreement level

values 0.5, 0.65, and 0.85. This Monte Carlo simulation is based on 10,000 iterations,

and 1,000 bootstrap samples were generated from each of the iterations.

Table 5. Raters’ Classification Probabilities for the Systematic Disagreement Experiment.

qa kb Rater 1 Rater 2 Rater 3

3 1 2/3 1/6 1/6
2 1/6 2/3 1/6
3 1/6 1/6 2/3

4 1 2/4 1/6 1/6
2 1/6 2/4 1/6
3 1/6 1/6 2/4
4 1/6 1/6 1/6

5 1 3/5 1/10 1/10
2 1/10 3/5 1/10
3 1/10 1/10 3/5
4 1/10 1/10 1/10
5 1/10 1/10 1/10

aq = number of categories in the experiment.
bk = category label.

Table 6. Coverage Rates of 95% Confidence Intervals When There is Systematic Disagreement
Among Raters.

Sample size (n)

(q)a Agreement coefficient 10 20 30 40 50 80 100

3 Cohen’s kappa 0.966 0.956 0.956 0.952 0.950 0.952 0.948
Scott’s pi 0.903 0.929 0.940 0.941 0.940 0.946 0.944
Gwet’s AC1 0.913 0.931 0.942 0.938 0.942 0.945 0.947
Brennan–Prediger 0.882 0.926 0.936 0.940 0.944 0.946 0.947
Krippendorff’s alpha 0.925 0.940 0.949 0.946 0.948 0.952 0.952

4 Cohen’s kappa 0.930 0.938 0.944 0.946 0.949 0.948 0.946
Scott’s pi 0.912 0.934 0.939 0.941 0.944 0.945 0.943
Gwet’s AC1 0.926 0.933 0.940 0.944 0.946 0.946 0.945
Brennan–Prediger 0.885 0.928 0.931 0.941 0.947 0.947 0.945
Krippendorff’s alpha 0.922 0.939 0.943 0.945 0.948 0.950 0.946

5 Cohen’s kappa 0.953 0.948 0.949 0.944 0.944 0.949 0.947
Scott’s pi 0.914 0.928 0.937 0.941 0.944 0.944 0.948
Gwet’s AC1 0.936 0.934 0.942 0.940 0.944 0.942 0.943
Brennan–Prediger 0.858 0.931 0.930 0.937 0.947 0.942 0.942
Krippendorff’s alpha 0.914 0.928 0.936 0.942 0.944 0.944 0.948

aq = number of categories.
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The results are depicted in Figures 2 to 4. It appears from these figures that the

linearization and the bootstrap methods produce strikingly similar results. Figure 4

confirms (with the bootstrap method) the poor interval coverage rate of the Brenann–

Prediger coefficient for small sample sizes. This provides another indication of the

adequacy of the proposed linearization method for testing correlated agreement coef-

ficients for statistical significance.

Discussion

This article addressed the problem of testing the difference between two correlated

agreement coefficients for statistical significance. This research was motivated by the

complexity of existing procedures and the desire to propose a simpler approach that
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Figure 2. Comparison between the linearization and bootstrap methods with respect to
their 95% confidence interval coverage rates, for k = 0.50.
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can be implemented more conveniently and with adequate efficiency (i.e., can pro-

vide acceptable coverage rates for smaller samples). While existing approaches rely

on statistical modeling or on bootstrapping the existing sample, the procedure recom-

mended in this article is based of the large-sample linear approximation of the agree-

ment coefficients of interest. The Monte Carlo experiment presented in the previous

section shows that the proposed procedure works reasonably well for sample sizes as

small as 10, provided the agreement level is not too high. For higher agreement lev-

els, a sample size of 30, or 40 may be necessary to obtain satisfactory results.

A key lesson to be learned from our Monte Carlo experiment is that testing the

difference between correlated agreement coefficients for statistical significance using

the procedure we recommend works well for small sample sizes when the distribu-

tion of subjects is not too skewed toward one category, and the agreement level too

high. However, the quality of this test for small samples deteriorates when this
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Figure 3. Comparison between the linearization and bootstrap methods with respect to
their 95% confidence interval coverage rates, for k = 0:65.
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distribution becomes very skewed (i.e., agreement level k and prevalence rate are

simultaneously very high). In this case, increasing the sample size becomes the only

remedy. However, a sample size of 40 appears to yield a good coverage rate for all

agreement levels and all prevalence rates. Small sizes such as 10 must be avoided if

the distribution of subjects is anticipated to be heavily skewed toward one category.

Throughout this article, we have assumed that each rater rated all subjects, yield-

ing a data set with no missing ratings. The situation in practice may be different. We

provide in appendix A the formulas that should be used when dealing with missing

ratings. These equations and those discussed previously produce identical results if

there is no missing rating.

Although the focus of this article was on testing the difference between two correlated

agreement coefficients for statistical significance, extending the proposed method to the

testing of the equality of several agreement coefficients is straightforward. In fact one can
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Figure 4. Comparison between the linearization and bootstrap methods with respect to
their 95% confidence interval coverage rates, for k = 0:85.
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still use the same large-sample linear approximations of the agreement coefficients along

with existing statistical tests such as the analysis of variance (ANOVA) or the Friedman

test if the nonparametric approach is deemed more appropriate.

Appendix A

Handling Missing Values

In the main part of this article, we provided several equations that can be used as lin-

ear approximations to various agreement coefficients. All these equations are valid

only when there is no missing rating. That is, each rater is assumed to have rated all

subjects. Practitioners know that missing ratings are common in practice for a variety

of reasons. Testing the difference between two correlated agreement coefficients in

the presence of missing ratings require the use of slightly different equations. Let n

be the number of subjects to be rated, and n0 the number subjects that are rated by 2

raters or more. We also assume that r is the number of raters, and ri the number of

raters who rated a particular subject i.

� Fleiss’s generalized kappa coefficient

In the presence of missing ratings, Fleiss’s generalized kappa coefficient can be

expressed as average of the kH

Fji values given by

kH

Fji = kFji � 2(1� k̂F)(peji � pe)=(1� pe), ð21Þ

where

kFji =
(n=n0)(paji � pe)=(1� pe), if ri � 2,

0, otherwise,

�

paji =

Pq
k = 1

rik (rik�1)
ri(ri�1)

, if ri � 2,

0, otherwise,

8<
: ð22Þ

peji =
Xq

k = 1

pkrik=ri: ð23Þ

Note that k̂F and pe are obtained by averaging the kFji and peji values respectively

over all n sample subjects.

� Krippendorff’s alpha coefficient

Let �r be the average number of raters who rated a subject (i.e., the mean value of the

ris). In the presence of missing ratings, Krippendorff’s alpha can be expressed as the

average of the aH

Kji values given by
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aH

Kji = aKji � (1� âK)(peji � pe)=(1� pe) ð24Þ

and,

aK ij = (paen ij � pe)=(1� pe)

paen ij = (1� en)½pa ij � pa(ri � �r)=�r�+ en, and paji =
Pq

k = 1
rik (rik�1)
�r(ri�1)

, pa = 1
n

Pn
i = 1 paji

and peji =
Pq

k = 1 pk
rik

r
� (ri � �r)=�r

Moreover, âK and pe are obtained by averaging the aKjis and the pejis, respectively,

over the entire sample of n subjects. Note that only subjects rated by 2 raters or more

are considered in the calculation of Krippendorff’s alpha. Subjects rated by a single

rater are excluded for the analysis altogether.

� Conger’s generalized kappa coefficient

In the presence of missing ratings, Conger’s generalized kappa coefficient can be

expressed as the average of the k
Cji values given by

kH

Cji = kCji � 2(1� k̂C)(peji � pe)=(1� pe), ð25Þ

where

kCji =
(n=n0)(paji � pe)=(1� pe), if ri � 2,

0, otherwise,

�

where paji is defined by Equation (22), and peji the percent chance agreement associ-

ated with subject i is given by,

peji =
1

r(r � 1)

Xr

g = 1

Xq

k = 1

d
(i)
gk(r�p + k � pgk),

with d
(i)
gk = 1 if rater g classifies subject i into category k, and d

(i)
gk = 0 otherwise. The

percent chance agreement is obtained by averaging the peji values over all n sample

subjects.

� Gwet’ AC1 coefficient

In the presence of missing ratings, Gwet’s AC1 coefficient can be expressed as the

average of the kH

Gji values given by

kH

Gji = kGji � 2(1� k̂G)(peji � pe)=(1� pe), ð26Þ

where
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kGji =
(n=n0)(paji � pe)=(1� pe), if ri � 2,

0, otherwise,

�

with paji defined by Equation (22), and peji the percent chance agreement associated

with subject i given by

peji =
1

q� 1

Xq

k = 1

(1� pk)rik=ri:

The percent chance agreement pe is calculated by averaging the peji values over the

entire sample of n subjects.

� Brennan–Prediger Coefficient

In the presence of missing ratings, the Brennan–Prediger coefficient can be expressed

as the average of the kBPji values given by:

kBPji =
(n=n0)(paji � 1=q)=(1� 1=q), if ri � 2,

0, otherwise,

�

where paji is defined by Equation (22).

Appendix B

Walkthrough Example

This appendix uses a step-by-step approach to illustrate how the proposed lineariza-

tion method for testing correlated agreement coefficients can be implemented in prac-

tice. We confine ourselves to the AC1 statistic, and use the data shown in the first

four columns of Table B1. These data summarize the results of an interrater reliability

experiment that involves 3 raters who must classify each of the 15 sample subjects

into one of 3 categories labeled as 1, 2, and 3.

The main analytic goal is to test the hypothesis that the extent of agreement k(1, 2)

between raters 1 and 2 is identical to the extent of agreement k(1, 3) between raters 1

and 3. That is,

H0 : k(1, 2) = k(1, 3),

H1 : k(1, 2) 6¼ k(1, 3):

�
ð27Þ

We want this walkthrough example to be sufficiently detailed for practitioners to see

all the steps involved in the implementation of the linearization method. As a matter

of fact, this method may even be implemented manually for small samples by follow-

ing the steps described here.
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The implementation of the linearization method for comparing correlated agree-

ment coefficients is done in four steps:

(a) Compute the binary category membership indicators e(g)
ik , which take value 1

only if rater g classifies subject i into category k, and take value 0 otherwise.

(b) Compute the effect k
H(1, 2)

Gji of each subject i on the AC1 coefficient between

raters 1 and 2, based on equation (16).

(c) Compute the effect k
H(1, 3)

Gji of each subject i on the AC1 coefficient between

raters 1 and 3, based on Equation (16).

(d) Compute the subject-level differences di = k
H(1, 3)

Gji � k
H(1, 2)

Gji , and the variance

of their mean before computing the T-statistic of Equation (8). This test sta-

tistic can then be compared with the critical value before deciding on the

rejection or the nonrejection of the null hypothesis.

(a) The Dichotomous Category Membership Indicators e(g)
ik

� This first step is described in Table B1, and consists of recoding the initial

raw ratings in the form of dichotomous category membership indicators repre-

sented by the variables e(g)
ik . The variable e(g)

ik takes value 1 if rater g classifies

subject i into category k, and takes value 0 otherwise.
� The bottom part of Table B1 contains a few summary statistics. pk + repre-

sents the relative number of subjects classified into category k by rater 1 and

is obtained by averaging the numbers in the associated column. p + k on the

other hand, represents the relative number of subjects classified into category

k by the second rater whose extent of agreement with rater 1 is being evalu-

ated. The second rater is rater 2 if the pair of raters under consideration is (1,

2), and becomes rater 3 in the pair (1, 3). Moreover pk = (pk + + p + k)=2 is cal-

culated for each of the two pairs of raters (1, 2) and (1, 3) being analyzed. For

the (1, 2) pair of raters for example p2 = (0:2 + 0:133)=2 = 0:167, and

p3 = (0:2 + 0:2)=2 = 0:2.
� Adapting Table B1 to the situation where the same pair of raters is compared

to itself on two different occasions—as opposed to two overlapping pairs of

raters taken out of a group of 3 raters—is straightforward. On any given occa-

sion, each rater must be treated as a distinct entity in its own right.

(b) Subject Effects k
H(1, 2)

G ji on AC1 Coefficient Between Raters 1 and 2

� The primary objective of this step is to compute the contribution k
H(1, 2)

Gji of

each subject i to the AC1 coefficient between raters 1 and 2 as given by

Equation (16). These quantities are shown in the last column of Table B2. All

computations leading to these numbers are described in Table B2, and imple-

ment Equation (16) as well as the equations found in the subsection entitled

‘‘The Special Case of Two Raters’’ associated with Gwet’s AC1 coefficient.
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� The subject-level percent agreement paji is a dichotomous variable taking value

1 when both raters agree, and will take a value of 0 otherwise. Averaging these

numbers produces the percent agreement pa = 0:867 between raters 1 and 2.
� Columns 3, 4, and 5 use Table B1 results to compute for each subject i the

percent chance agreement on subject i and on category k given by

pejik = (1� pk)½e(1)
ik + e(2)

ik �=½2(q� 1)�. For subject 2 and category 1 for exam-

ple, pej21 = (1� 0:633)3(1 + 1)=(23(3� 1)) = 0:3667=2 = 0:1833. Once avail-

able, these quantities are summed over all three categories to obtain the

percent chance agreement peji associated with subject i. Averaging the peji
values produces the percent chance agreement pe = 0:266 (see cell defined by

the last row of Table B2 and column 6).
� Column 7 of Table B2 is obtained by subtracting pe from column 2 and by

dividing the difference by 1� pe. Column 7 on the other hand is calculated

according to Equation (16).

(c) Subject Effects k
H(1, 3)

G ji on AC1 Coefficient Between Raters 1 and 3

� The primary objective of this step is to compute the contribution k
H(1, 3)

Gji of

each subject i to the AC1 coefficient between raters 1 and 3, as given by

Equation (16). These quantities are shown in the last column of Table B3. All

computations leading to these numbers are described in Table B3, and are

similar to those of Table B2.

(d) Testing the Hypothesis

� Once the k
H(1, 3)

Gji values are calculated, we can compute the subject-level dif-

ferences di = k
H(1, 3)

Gji � k
H(1, 2)

Gji (see the last column of Table B3) as well as the

variance of mean difference, which is given by v(d) = 0:009090.
� We are now in the position to perform the test of hypothesis. The T-statistic of

Equation (8) is given by

T =
0:728� 0:818ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:009090
p = � 0:95209:

If we want to test the null hypothesis at the 5% significance level, then the critical

value to be used is c0:05 = 2:145. Since the absolute value of the T-statistic is below

this critical value, we cannot reject the null hypothesis of equality of the agreement

levels between the (1, 2), and (1, 3) pairs of raters.
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