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Pi (p) and kappa (k) statistics are widely used in the areas of psychiatry and
psychological testing to compute the extent of agreement between raters on nominally
scaled data. It is a fact that these coefficients occasionally yield unexpected results in
situations known as the paradoxes of kappa. This paper explores the origin of these
limitations, and introduces an alternative and more stable agreement coefficient
referred to as the AC1 coefficient. Also proposed are new variance estimators for the
multiple-rater generalized p and AC1 statistics, whose validity does not depend upon
the hypothesis of independence between raters. This is an improvement over existing
alternative variances, which depend on the independence assumption. A Monte-Carlo
simulation study demonstrates the validity of these variance estimators for confidence
interval construction, and confirms the value of AC1 as an improved alternative to
existing inter-rater reliability statistics.

1. Introduction

Researchers in various fields often need to evaluate the quality of a data collection

method. In many studies, a data collection tool, such as a survey questionnaire, a

laboratory procedure or a classification system, is used by different people referred to as

raters, observers or judges. In an effort to minimize the effect of the rater factor on data
quality, investigators like to know whether all raters apply the data collection method in

a consistent manner. Inter-rater reliability quantifies the closeness of scores assigned by

a pool of raters to the same study participants. The closer the scores, the higher the

reliability of the data collection method. Although reliability data can be discrete or

continuous, the focus of this paper is on inter-rater reliability assessment on nominally

scaled data. Such data are typically obtained from studies where raters must classify

study participants into one category among a limited number of possible categories.

Banerjee, Capozzoli, McSweeney, and Sinha (1999) provide a good review of the
techniques developed to date for analysing nominally scaled data. Two of the most

influential papers in this area are those of Fleiss (1971) and Fleiss, Cohen, and Everitt
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(1969), which contain the most popular results in use today. Fleiss et al. provide large

sample approximations of the variances of the k and weighted k statistics suggested by

Cohen (1960, 1968), respectively in the case of two raters, while Fleiss extends the

p-statistic to the case of multiple raters. Landis and Koch (1977) also give an instructive

discussion of inter-rater agreement among multiple observers. Agresti (2002) presents

several modelling techniques for analysing rating data in addition to presenting a short
account of the state of the art. Light (1971) introduces measures of agreement

conditionally upon a specific classification category, and proposes a generalization of

Cohen’s k-coefficient to the case of multiple raters. Conger (1980) suggests an

alternative multiple-rater agreement statistic obtained by averaging all pairwise overall

and chance-corrected probabilities proposed by Cohen (1960). Conger (1980) also

extends the notion of pairwise agreement to that of g-wise agreement where agreement

occurs if g raters rather than two raters classify an object into the same category.

In section 2, I introduce the most commonly used pairwise indexes. Section 3
discusses a theoretical framework for analysing the origins of the kappa’s paradox. An

alternative and more stable agreement coefficient referred to as the AC1 statistic is

introduced in section 4. Section 5 is devoted to the analysis of the bias associated with

the various pairwise agreement coefficients under investigation. In section 6, a variance

estimator for the generalized p-statistic is proposed, which is valid even under the

assumption of dependence of ratings. Section 7 presents a variance estimator of the AC1

statistic, which is always valid. The important special case of two raters is discussed in

section 8, while section 9 describes a small simulation study aimed at verifying the
validity of the variance estimators as well as the magnitude of the biases associated with

the various indexes under investigation.

2. Cohen’s k, Scott’s p, G-index and Fleiss’s generalized p

In a two-rater reliability study involving raters A and B, the data will be reported in a two-

way contingency table such as Table 1. Table 1 shows the distribution of n study

participants by rater and response category, where nkl indicates the number of

participants that raters A and B classified into categories k and l, respectively.

All inter-rater reliability coefficients discussed in this paper have two components:
the overall agreement probability pa, which is common to all coefficients, and the

chance-agreement probability pe, which is specific to each index. For the two-rater

Table 1. Distribution of n participants by rater and response category

Rater B

Rater A 1 2 · · · q Total

1

2

..

.

q

n11 n12 · · · n1q

n21 n22 · · · n2q

· · ·

nq1 nq2 · · · nqq

nA1

nA2

..

.

nAq

Total nB1 nB2 · · · nBq n
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reliability data of Table 1, the overall agreement probability is given by:

pa ¼
Xq
k¼1

pkk; where pkk ¼ nkk=n:

Let pAk ¼ nAk/n, pBk ¼ nBk/n, and p̂k ¼ ðpAk þ pBkÞ=2: Cohen’s k-statistic is given by:

ĝk ¼ ð pa 2 pejkÞ=ð12 pejkÞ; where pejk ¼
Xq
k¼1

pAkpBk:

Scott (1955) proposed the p-statistic given by:

ĝp ¼ ð pa 2 pejpÞ=ð12 pejpÞ; where pejp ¼
Xq
k¼1

p̂2
k:

The G-index of Holley and Guilford (1964) is given by:

ĝG ¼ ð pa 2 pejGÞ=ð12 pejGÞ;
where pejG ¼ 1/q, and q represents the number of response categories. Note that the

expression used for ĝG here is more general than the original Holley–Guilford formula,

which was presented for the simpler situation of two raters and two response categories
only.

If a reliability study involves an arbitrarily large number r of raters, rating data are

often reported in a frequency table showing the distribution of raters by participant and

response category, as described in Table 2. For a given participant i and category k, rik
represents the number of raters who classified participant i into category k.

Fleiss (1971) extended Scott’s p-statistic to the case of multiple raters (r) and

proposed the following equation:

ĝp ¼ pa 2 pejp
12 pejp

; where

pa ¼ 1

n

Xn
i¼1

Xq
k¼1

rikðrik 2 1Þ
rðr 2 1Þ ;

pejp ¼
Xq
k¼1

p̂2
k; and p̂k ¼ 1

n

Xn
i¼1

rik

r
:

8>>>>><>>>>>:
ð1Þ

Table 2. Distribution of r raters by participant and response category

Category

Participant 1 2 · · · q Total

1

2

..

.

n

r11 r12 · · · r1q

r21 r22 · · · r2q

· · ·

rn1 rn2 · · · rnq

r

r

..

.

r

Total rþ1 rþ2 · · · rþq nr
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The terms pa and pejp are, respectively, the overall agreement probability and the

probability of agreement due to chance. Conger (1980) suggested a generalized version

of the k-statistic that is obtained by averaging all r(r 2 1)/2 pairwise k-statistics as

defined by Cohen (1960). The k-statistic can also be generalized as follows:

ĝk ¼ pa 2 pejk
12 pejk

;

where pa is defined as above and chance-agreement probability pejk given by:

pejk ¼
Xq
k¼1

Xr

a¼2

ð21Þa
X

i1,· · ·,ia

Ya
j¼1

pkij

� !
: ð2Þ

The term pkij ð j ¼ 1; :::;aÞ represents the proportion of participants that rater ij
classified into category k. It follows from equation (2) that if r ¼ 2, then pejk reduces to
the usual formula of chance-agreement probability for the k-statistic. For r ¼ 3 and r ¼ 4

the chance-agreement probabilities are, respectively, given by:

pejkð3Þ ¼
Xq
k¼1

ð pk1pk2 þ pk1pk3 þ pk2pk3 2 pk1pk2pk3Þ;

pejkð4Þ ¼
Xq
k¼1

½ð pk1pk2 þ pk1pk3 þ pk1pk4 þ pk2pk3 þ pk2pk4 þ pk3pk4Þ

2 ð pk1pk2pk3 þ pk1pk2pk4 þ pk1pk3pk4 þ pk2pk3pk4Þ

þ pk1pk2pk3pk4	:

This general version of the k-statistic has not been studied yet and no expression for its

variance is available. There is no indication, however, that it has better statistical

properties than Fleiss’s generalized statistic. Nevertheless, a practitioner interested in

using this estimator, may still estimate its variance using the jackknife method described

by equation (36) for the p-statistic. Hubert (1977) discusses other possible extensions of
the k-statistic to the case of multiple raters.

3. Paradox’s origin

Table 3 contains an example of rating data. These illustrate the limitations of equation

(1) as a measure of the extent of agreement between raters. For those data,

Table 3. Distribution of 125 participants by rater and response category

Rater B

Rater A þ 2 Total

þ 118 5 123
2 2 0 2
Total 120 5 125
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ĝp ¼ ð0:94402 0:9456Þ=ð12 0:9456Þ ¼ 20:0288, which is even a negative value. This

result is the opposite of what our intuition would suggest and illustrates one of the

paradoxes noted by Cicchetti and Feinstein (1990) where high agreement is coupled

with low k. In this example, raters A and B are expected to have a high inter-rater

reliability.

To understand the nature and the causes of the paradoxical behaviour of the p- and
k-statistics, I will confine myself to the case of two raters, A and B, who must identify the

presence or absence of a trait on individuals of a given population of interest. These

individuals will eventually be selected to participate in a study, and are therefore

potential study participants. The two raters will classify participants into the ‘ þ ’ or

‘ 2 ’ categories according to whether the trait is found or not. I will study how

agreement indexes are affected by raters’ sensitivity, specificity and the trait prevalence

in the population. The rater’s sensitivity is defined as the conditional probability of

classifying a participant into the ‘ þ ’ category given that the trait is indeed present. The
rater’s specificity is the conditional probability of classifying a participant into the ‘ 2 ’

category given that the trait is actually absent.

Let aA and aB denote, respectively, raters A and B sensitivity values. Similarly, bA and

bB will denote raters A and B specificity values. It follows that the probabilities PAþ and

PBþ for raters A and B to classify a participant into the ‘ þ ’ category are given by

PAþ ¼ PraA þ ð12 PrÞð12 bAÞ; ð3Þ

PBþ ¼ PraB þ ð12 PrÞð12 bBÞ; ð4Þ

where Pr represents the population trait prevalence. Our objective is to study how trait

prevalence, sensitivity and specificity affect inter-rater reliability. For the sake of
simplicity I will make the following two assumptions:

(A1) Sensitivity and specificity are identical for both raters. That is aA ¼ bA and

aB ¼ bB.

(A2) Correct classifications are independent. That is, if aAB denotes the probability

that raters A and B correctly classify an individual into the ‘ þ ’ category, then

aAB ¼ aAaB.

The probability Pa that both raters agree is given by Pa ¼ pþþ þ p22, where

pþþ andp22 are obtained as follows

pþþ ¼ aAaBPr þ ð12 PrÞð12 bAÞð12 bBÞ ¼ aAaBPr þ ð12 PrÞð12 aAÞð12 aBÞ;

and p22 ¼ 12 ðPAþ þ PBþ 2 pþþÞ. The following important equation can be

established:

Pa ¼ ð12 aAÞð12 aBÞ þ aAaB: ð5Þ

This relation shows that the overall agreement probability between two raters A and B

does not depend upon the trait prevalence. Rather, it depends upon the rater’s

sensitivity and specificity values.

Computing inter-rater reliability and its variance 33



The partial derivative with respect to Pr of an inter-rater coefficient of the form

g ¼ ðPa 2 PeÞ=ð12 PeÞ is given by

›g=›Pr ¼ 2
12 Pa

ð12 PeÞ2 ›Pe=›Pr; ð6Þ

since, from equation (5), one can conclude that ›Pa=›Pr ¼ 0. For Scott’s p and Cohen’s

k-statistics,

›gp=›Pr ¼ 2
ð12 2lÞ2ð12 PaÞð12 2PrÞ

ð12 PejpÞ2
; ð7Þ

›gk=›Pr ¼ 2
ð12 2aAÞð12 2aBÞð12 PaÞð12 2PrÞ

ð12 PejkÞ2
; ð8Þ

where l ¼ ðaA þ aBÞ=2. Let pþ be the probability that a randomly chosen rater classifies

a randomly chosen participant into the ‘ þ ’ category. Then,

pþ ¼ ðPAþ þ PBþÞ=2 ¼ lPr þ ð12 lÞð12 PrÞ: ð9Þ
The two equations (7) and (8) are derived from the fact that Pejp ¼ p2

þ þ ð12 pþÞ2 and
Pejk ¼ 12 ðPAþ þ PBþÞ þ 2PAþPBþ. It follows from assumption A1 that ›gG=›Pr ¼ 0,

since ĝG is solely a function of Pa. Under this assumption, the G-index takes a constant
value of 2Pa 2 1 that depends on the raters’ sensitivity. Equation (6) shows that chance-

agreement probability plays a pivotal role on how inter-rater reliability relates to trait

prevalence. Equation (7) indicates that Scott’s p-statistic is an increasing function of Pr
for the values of trait prevalence between 0 and 0.50, and becomes decreasing for

Pr . 0.50, reaching its maximum value when Pr ¼ 0:50. Because 0 # Pr # 1, ĝp takes

its smallest value at Pr ¼ 0 and Pr ¼ 1. Using equation (5) and the expression of Pejp,
one can show that:

gp ¼ ð2l2 1Þ2Prð12 PrÞ2 ðaA 2 aBÞ2=4
ð2l2 1Þ2Prð12 PrÞ þ lð12 lÞ : ð10Þ

It follows that,

if Pr ¼ 0 or Pr ¼ 1 then gp ¼ 2
ðaA 2 aBÞ2
4ð12 lÞ ; ð11Þ

if Pr ¼ 0:50 then ĝp ¼ 2Pa 2 1 ¼ 12 4lþ 4aAaB; ð12Þ
Equations (10), (11) and (12) show very well how paradoxes often occur in practice.

From equation (11) it appears that whenever a trait is very rare or omnipresent, Scott’s

p-statistic yields a negative inter-rater reliability regardless of the raters’ sensitivity

values. In other words, if prevalence is low or high, any large extent of agreement

between raters will not be reflected in the p-statistic.
Equation (8), on the other hand, indicates that when trait prevalence is smaller than

0.5, Cohen’s k-statistic may be an increasing or a decreasing function of trait prevalence
depending on raters A and B sensitivity values. That is, if one rater has a sensitivity

smaller than 0.5 and the other a sensitivity greater than 0.5 then k-statistic is a

decreasing function of Pr , otherwise it is increasing. The situation is similar when trait

prevalence is greater than 0.50. The maximum or minimum value of k is reached at

Pr ¼ 0:50. If one rater has a sensitivity of 0.50, then k ¼ 0 regardless of the trait
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prevalence. The general equation of Cohen’s k-statistic is given by:

gk ¼ ð2aA 2 1Þð2aB 2 1ÞPrð12 PrÞ
ð2aA 2 1Þð2aB 2 1ÞPrð12 PrÞ þ ð12 PaÞ=2 : ð13Þ

It follows that:

if Pr ¼ 0 or Pr ¼ 1 then ĝk ¼ 0; ð14Þ
if Pr ¼ 0:50 then ĝk ¼ 2Pa 2 1 ¼ 12 4lþ 4aAaB: ð15Þ

Similar to Scott’s p-statistic, k seems to yield reasonable values only when trait

prevalence is close to 0.5. A value of trait prevalence that is either close to 0 or close to 1

will considerably reduce the ability of k to reflect any extent of agreement between

raters.

Many inter-rater agreement coefficients proposed in the literature have been

criticized on the grounds that they are dependent upon trait prevalence. Such a

dependence is inevitable if raters’ sensitivity levels are different from their specificity

levels. In fact, without assumption A1, even the overall agreement probability Pa is
dependent upon trait prevalence Pr due to the fact that Pa can be expressed as follows:

Pa ¼ 2ððaAaB 2 bAbBÞ2 ½ðaA þ aBÞ2 ðbA þ bBÞ	ÞPr þ ð1þ 2bAbB 2 ðbA þ bBÞÞ:
However, the impact of prevalence on the overall agreement probability is small if

sensitivity and specificity are reasonably close.

The previous analysis indicates that the G-index, p-statistic and k-statistic all have the
same reasonable behaviour when trait prevalence Pr takes a value in the neighbourhood

of 0.5. However, their behaviour becomes very erratic (with the exception of G-index)

as soon as trait prevalence goes to the extremes. I argue that the chance-agreement
probability used in these statistics is ill-estimated when trait prevalence is in the

neighbourhood of 0 or 1. I will now propose a new agreement coefficient that will share

the common reasonable behaviour of its competitors in the neighbourhood of 0.5, but

will outperform them when trait prevalence goes to the extremes.

4. An alternative agreement statistic

Before I introduce an improved alternative inter-rater reliability coefficient, it is

necessary to develop a clear picture of the goal one normally attempts to achieve by

correcting inter-rater reliability for chance agreement. My premises are the following:

(a) Chance agreement occurs when at least one rater rates an individual randomly.

(b) Only an unknown portion of the observed ratings is subject to randomness.

I will consider that a rater A classifies an individual into one of two categories either

randomly, when he or she does not know where it belongs, or with certainty, when he

or she is certain about its ‘true’ membership. Rater A performs a random rating not all

the time, but with a probability uA. That is, uA is the propensity for rater A to perform a
random rating. The participants not classified randomly are supposed to have been

classified into the correct category. If the random portion of the study was identifiable,

rating data of two raters A and B classifying N individuals into categories ‘ þ ’ and ‘ 2 ’

could be reported as shown in Table 4.
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Note that Nþ 2 ·RC for example, represents the number of individuals that rater A
classified randomly into the ‘ þ ’ category and that rater B classified with certainty into

the ‘ 2 ’ category. In general, for (k, l ) [ {þ , 2 }, and (X, Y) [ {R, C}, Nkl·XY

represents the number of individuals that rater A classified into category k using a

classification method X (random or certainty), and that rater B classified into category l

using a classification method Y (random or certainty).

To evaluate the extent of agreement between raters A and B from Table 4, what is

needed is the ability to remove from consideration all agreements that occurred by

chance; that isNþþ·RR þ Nþþ·CR þ Nþþ·RC þ N22·RR þ N22·CR þ N22·RC. This yields the
following ‘true’ inter-rater reliability:

g ¼ Nþþ�CC þ N22�CCX
k[{þ;2}

Nkk�RR þ Nkk�CR þ Nkk�RC
� � ð16Þ

Equation (16) can also be written as:

g ¼ Pa 2 Pe

12 Pe
; where

Pa ¼
X

k[{þ;2}

X
X;Y[{C;R}

Nkk�XY
N

; and Pe ¼
X

k[{þ;2}

X
X;Y2{C;R}

ðX;Y Þ–ðC;CÞ

Nkk�XY
N

ð17Þ

In a typical reliability study the two raters A and B would rate n study participants, and

rating data reported as shown in Table 1, with q ¼ 2. The problem is to find a good

statistic ĝ for estimating g. A widely accepted statistic for estimating the overall

agreement probability Pa is given by:

pa ¼ ðnþþ þ n22Þ=n: ð18Þ

The estimation of Pe represents a more difficult problem, since it requires one to be able

to isolate ratings performed with certainty from random ratings. To get around this

difficulty, I decided to approximate Pe by a parameter that can be quantified more easily,

and to evaluate the quality of the approximation in section 5.

Table 4. Distribution of N participants by rater, randomness of classification and response category

Rater B

Random (R) Certain (C)

þ 2 þ 2

Rater A Random (R) þ Nþþ·RR Nþ 2 ·RR Nþþ·RC Nþ 2 ·RC

2 N2 þ ·RR N22·RR N2 þ ·RC N22·RC

Certain (C) þ Nþþ·CR Nþ 2 ·CR Nþþ·CC 0
2 N2 þ ·CR N22·CR 0 N22·CC
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Suppose an individual is selected randomly from a pool of individuals and rated by

raters A and B. Let G and R be two events defined as follows:

G ¼ {The two ratersA andB agree}; ð19Þ
R ¼ {A rater ðA; or B; or bothÞperforms a random rating}: ð20Þ

It follows that Pe ¼ PðG> RÞ ¼ PðG=RÞPðRÞ, where P(G/R) is the conditional

probability that A and B agree given that one of them (or both) has performed a

random rating.

A random rating would normally lead to the classification of an individual into either

category with the same probability 1/2, although this may not always be case. Since

agreement may occur on either category, it follows that PðG=RÞ ¼ 2 £ 1=22 ¼ 1=2. As for
the estimation of the probability of random rating P(R), one should note that when the

trait prevalence Pr is high or low (i.e. if Pr(1 2 Pr) is small), a uniform distribution of
participants among categories is an indication of high proportion of random ratings,

hence of high probability P(R).

Let the random variable Xþ be defined as follows:

Xþ ¼
1 if a rater classifies the participant into categoryþ;

0 otherwise:

(

I suggest approximating P(R) with a normalized measure of randomness C defined by

the ratio of the variance V(Xþ) of Xþ to the maximum possible variance VMAX for Xþ,
which is reached only when the rating is totally random. It follows that

C ¼ V ðXþÞ=VMAX ¼ pþð12 pþÞ
1=2ð12 1=2Þ ¼ 4pþð12 pþÞ;

where pþ represents the probability that a randomly chosen rater classifies a randomly

chosen individual into the ‘ þ ’ category. This leads to the following formulation of

chance agreement:

P�
e ¼ PðG=RÞC ¼ 2pþð12 pþÞ: ð21Þ

This approximation leads to the following approximated ‘true’ inter-rater reliability:

g� ¼ Pa 2 P�
e

12 P�
e

; ð22Þ

The probability pþ can be estimated from sample data by p̂þ ¼ ð pAþ þ pBþÞ=2, where

pAþ ¼ nA þ =n and pBþ ¼ nBþ=n. This leads to a chance-agreement probability

estimator p�e ¼ PðG=RÞĈ; where Ĉ ¼ 4p̂þð12 p̂þÞ: That is,
p�e ¼ 2p̂þð12 p̂þÞ: ð23Þ

Note that p̂þð12 p̂þÞ ¼ p̂2ð12 p̂2Þ: Therefore, p�e can be rewritten as

p�e ¼ p̂þð12 p̂þÞ þ p̂2ð12 p̂2Þ:
The resulting agreement statistic is given by,

ĝ1 ¼ ð pa 2 p�eÞ=ð12 p�eÞ;
with pa given by equation (18), and is shown in section 5 mathematically to have a

smaller bias with respect to the ‘true’ agreement coefficient than all its competitors.
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Unlike the k- and p-statistics, this agreement coefficient uses a chance-agreement

probability that is calibrated to be consistent with the propensity of random rating that

is suggested by the observed ratings. I will refer to the calibrated statistic ĝ1 as the AC1

estimator, where AC stands for agreement coefficient and digit 1 indicates the first-order

chance correction, which accounts for full agreement only as opposed to full and partial

agreement (second-order chance correction); the latter problem, which will be

investigated elsewhere, will lead to the AC2 statistic.

A legitimate question to be asked is whether the inter-rater reliability statistic ĝ1;
estimates the ‘true’ inter-rater reliability of equation (16) at all, and under what

circumstances. I will show in the next section that if trait prevalence is high or low, then

ĝ1 does estimate the ‘true’ inter-rater reliability very well. However, with trait

prevalence at the extremes, p, k and G-index are all biased for estimating the ‘true’ inter-

rater reliability under any circumstances.

5. Biases of inter-rater reliability statistics

Let us consider two raters, A and B, who would perform a random rating with

probabilities uA and uB, respectively. Each classification of a study participant by a

random mechanism will either lead to a disagreement or to an agreement by chance.

The rater’s sensitivity values (which are assumed to be identical to their specificity

values) are given by:

aA ¼ 12 uA=2 and aB ¼ 12 uB=2:

These equations are obtained under the assumption that any rating that is not random

will automatically lead to a correct classification, while a random rating leads to a

correct classification with probability 1/2. In fact, aA ¼ ð12 uAÞ þ uA=2 ¼ 12 uA=2.
Under this simple rating model, and following equation (5), the overall agreement

probability is given by Pa ¼ aAaB þ ð12 aAÞð12 aBÞ ¼ 12 ðuA þ uBÞ=2þ uAuB=2. As
for chance-agreement probability Pe let RA and RB be two events defined as follows:

. RA: Rater A performs a random rating.

. RB: Rater B performs a random rating.

Then,

Pe ¼ PðG> RÞ ¼ PðG> RA > 
RBÞ þ PðG> RA > RBÞ þ PðG> 
RA > RBÞ

¼ uAð12 uBÞ=2þ uAuB=2þ uBð12 uAÞ=2 ¼ ðuA þ uB 2 uAuBÞ=2:

The ‘true’ inter-rater reliability is then given by:

g ¼ 2
ð12 uAÞð12 uBÞ

1þ ð12 uAÞð12 uBÞ : ð24Þ

The theoretical agreement coefficients will now be derived for the AC1, G-index, k, and
p statistics. Let l ¼ 12 ðuA þ uBÞ=4.
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For AC1 coefficient, it follows from equations (5) and (21) that chance-agreement

probability P�
e is obtained as follows:

P�
e ¼ 2pþð12 pþÞ ¼ 2½lPr þ ð12 lÞð12 PrÞ	½ð12 lPrÞ2 ð12 lÞð12 PrÞ	

¼ 2lð12 lÞ þ 2ð12 2lÞ2Prð12 PrÞ ¼ Pe 2 ðuA 2 uBÞ2=8þ D;

where D ¼ 2ð12 2lÞ2Prð12 PrÞ. The theoretical AC1 coefficient is given by:

g1 ¼ g2 ð12 gÞ ðuA 2 uBÞ2 2 D

ð12 PeÞ þ ½ðuA 2 uBÞ2=82 D	 : ð25Þ

For Scott’s p-coefficient, one can establish that the chance-agreement probability Pejp
is given by Pejp ¼ Pe þ ð12 uAÞð12 uBÞ þ ðuA 2 uBÞ2=82 D. This leads to Scott’s

p-coefficient of

gp ¼ g2 ð12 gÞ ð12 uAÞð12 uBÞ þ ðuA 2 uBÞ2=82 D

ð12 PeÞ2 ½ð12 uAÞð12 uBÞ þ ðuA 2 uBÞ2=8	 þ D
: ð26Þ

For the G-index, PejG ¼ 1=2 ¼ Pe þ ð12 uAÞð12 uBÞ=2:

gG ¼ g2 ð12 gÞ ð12 uAÞð12 uBÞ=2
ð12 PeÞ2 ð12 uAÞð12 uBÞ=2 : ð27Þ

For Cohen’s k-coefficient, Pejk ¼ Pe þ (1 2 uA)(1 2 uB) 2 Dk, where Dk ¼ 2(1 2
uA)(1 2 uB)Pr(1 2 Pr):

gk ¼ g2 ð12 gÞ ð12 uAÞð12 uBÞ2 Dk

ð12 PeÞ2 ½ð12 uAÞð12 uBÞ2 Dk	 : ð28Þ

To gain further insight into the magnitude of the biases of these different inter-rater

reliability statistics, let us consider the simpler case where raters A and B have the same

propensity for random rating; that is, uA ¼ uB ¼ u. The ‘true’ inter-rater reliability is

given by:

g ¼ 2ð12 uÞ2
1þ ð12 uÞ2 : ð29Þ

I define the bias of an agreement coefficient gX as BXðuÞ ¼ gX 2 g, the difference

between the agreement coefficient and the ‘true’ coefficient. The biases of AC1, p, k and

G-index statistics, respectively denoted by B1(u), Bp(u), Bk(u) and BG(u), satisfy the

following relations:

BGðuÞ ¼ 2
uð12 uÞ2ð22 uÞ
1þ ð12 uÞ2 ; 2

uð12 uÞ2ð22 uÞ
1þ ð12 uÞ2 # B1ðuÞ # 0;

2 2
ð12 uÞ2

1þ ð12 uÞ2 # BpðuÞ # 2
uð12 uÞ2ð22 uÞ
1þ ð12 uÞ2 ;

2 2
ð12 uÞ2

1þ ð12 uÞ2 # BkðuÞ # 2
uð12 uÞ2ð22 uÞ
1þ ð12 uÞ2 :

Which way the bias will go depends on the magnitude of trait prevalence. It follows

from these equations that the G-index consistently exhibits a negative bias, which may
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take a maximum absolute value around 17%, when the rater’s propensity for random

rating is around 35%, and will gradually decrease as u goes to 1. The AC1 statistic, on the

other hand, has a negative bias that ranges from 2uð12 uÞ2ð22 uÞ=ð1þ ð12 uÞ2Þ to 0,

reaching its largest absolute value of uð12 uÞ2ð22 uÞ=ð1þ ð12 uÞ2Þ only when the trait

prevalence is around 50%. The remaining two statistics, on the other hand, have some

serious bias problems on the negative side. The p and k statistics each have a bias whose

lowest value is22ð12 uÞ2=½1þ ð12 uÞ2	, which varies from 0 to21. That means p and

k may underestimate the ‘true’ inter-rater reliability by 100%.
The next two sections, 6 and 7, are devoted to variance estimation of the

generalized p-statistic and the AC1 statistic, respectively, in the context of multiple

raters. For the two sections, I will assume that the n participants in the reliability

study were randomly selected from a bigger population of N potential participants.

Likewise, the r raters can be assumed to belong to a bigger universe of R potential

raters. This finite-population framework has not yet been considered in the study of

inter-rater agreement assessment. For this paper, however, I will confine myself to the

case where r ¼ R, that is the estimators are not subject to any variability due to the
sampling of raters. Methods needed to extrapolate to a bigger universe of raters will

be discussed in a different paper.

6. Variance of the generalized p-statistic

The p-statistic denoted by ĝp is defined as follows:

ĝp ¼ pa 2 pejp
12 pejp

; ð30Þ

where pa and pejp are defined as follows:

pa ¼ 1

n

Xn
i¼1

Xq
k¼1

rikðrik 2 1Þ
rðr 2 1Þ ; and pejp ¼

Xq
k¼1

p̂2
k; with p̂k ¼ 1

n

Xn
i¼1

rik

r
: ð31Þ

Concerning the estimation of the variance of ĝp; Fleiss (1971) suggested the following

variance estimator under the hypothesis of no agreement between raters beyond

chance:

vðĝpjNo agreementÞ ¼ 2ð12 f Þ
nrðr 2 1Þ £

pejp 2 ð2r 2 3Þp2ejp þ 2ðr2 2Þ
Xq
k¼1

p̂3
k

ð12 pejpÞ2
; ð32Þ

where f ¼ n=N is the sampling fraction, which could be neglected if the population of

potential participants is deemed very large. It should be noted that this variance

estimator is invalid for confidence interval construction. The original expression
proposed by Fleiss does not include the finite-population correction factor 1 2 f.

Cochran (1977) is a good reference for readers interested in statistical methods in finite-

population sampling.

I propose here a non-paramateric variance estimator for ĝp that is valid for

confidence interval construction using the linearization technique. Unlike
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vðĝpjNo agreementÞ, the validity of the non-parametric variance estimator does not

depend on the extent of agreement between the raters. This variance estimator is

given by

vðĝpÞ ¼ 12 f

n

1

n2 1

Xn
i¼1

ðĝ�pi 2 ĝpÞ2; ð33Þ

where ĝ�pi is given by

ĝ�pi ¼ ĝpi 2 2ð12 ĝpÞ
pepji 2 pejp
12 pejp

; ð34Þ

where ĝpi ¼ ðpaji 2 pejpÞ=ð12 pejpÞ, and paji, and pepji are given by:

paji ¼
Xq
i¼1

rikðrik 2 1Þ
rðr2 1Þ ; and pepji ¼

Xq
k¼1

rik

r
p̂k: ð35Þ

To see how equation (33) is derived, one should consider the standard approach that

consists of deriving an approximation of the actual variance of the estimator and using a

consistent estimator of that approximate variance as the variance estimator. Let us
assume that as the sample size n increases, the estimated chance-agreement probability

pejp converges to a value Pejp and that each p̂k converges to pk. If p̂ and p denote the

vectors of the p̂k’s and pk’s, respectively, it can be shown that,

pejp 2 Pejp ¼ 2

n

Xn
i¼1

ð pepji 2 PejpÞ þ Opðkp̂2 pk2Þ;

and that if Gp ¼ ( pa 2 Pejp)/(1 2 Pejp), then ĝp can be expressed as,

ĝp ¼ ð pa 2 PejpÞ2 ð12 GpÞð pejp 2 PejpÞ
12 Pejp

þ Opðð pejp 2 PejpÞ2Þ:

The combination of these two equations gives us an approximation of ĝp that is a linear

function of rik and that captures all terms except those with a stochastic order of
magnitude of 1/n, which can be neglected. Bishop, Fienberg, and Holland (1975,

chapter 14) provide a detailed discussion of the concept of stochastic order of

magnitude.

The variance estimator of equation (33) can be used for confidence interval

construction as well as for hypothesis testing. Its validity is confirmed by the simulation

study presented in section 9.

Alternatively, a jackknife variance estimator can be used to estimate the variance of the

p-statistic. The jackknife technique introduced by Quenouille (1949) and developed by
Tukey (1958), is a general purpose technique for estimating variances. It has wide

applicability although it is computation intensive. The jackknife variance of ĝp is givenby:

vJðĝpÞ ¼ ð12 f Þðn2 1Þ
n

Xn
i¼1

ðĝði Þp 2 ĝð†Þp Þ2; ð36Þ

where ĝði Þp is the p-statistic obtained after removing participant i from the sample, while

ĝð†Þp represents the average of all ĝði Þp ’s. Simulation results not reported in this paper show
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that this jackknife varianceworkswell for estimating the variance of ĝp: The idea of using
the jackknife methodology for estimating the variance of an agreement coefficient was

previously evoked by Kraemer (1980).

7. Variance of the generalized AC1 estimator

The AC1 statistic ĝ1 introduced in section 4 can be extended to the case of r raters

(r . 2) and q response categories (q . 2) as follows:

ĝ1 ¼
pa 2 pejg
12 pejg

; ð37Þ

where pa is defined in equation (1), and chance-agreement probability pejg defined as

follows:

pejg ¼ 1

q2 1

Xq
k¼1

p̂kð12 p̂kÞ; ð38Þ

the p̂k’s being defined in equation (1).

The estimator ĝ1 is a non-linear statistic of the rik’s. To derive its variance, I have used

a linear approximation that includes all terms with a stochastic order of magnitude up to

n21/2. This will yield a correct asymptotic variance that includes all terms with an order
of magnitude up to 1/n. Although a rigorous treatment of the asymptotics is not

presented here, it is possible to establish that for large values of n, a consistent estimator

for estimating the variance of ĝ1 is given by:

vðĝ1Þ ¼ 12 f

n

1

n2 1

Xn
i¼1

ðĝ�1ji 2 ĝ1Þ2; ð39Þ

where f ¼ n=N is the sampling fraction,

ĝ�1ji ¼ ĝ1ji 2 2ð12 ĝ1Þ
pegji 2 pejg
12 pejg

;

ĝ1ji ¼ ðpaji 2 pejgÞ=ð12 pejgÞ is the agreement coefficient with respect to participant i,

paji is given by,

paji ¼
Xq
k¼1

rikðrik 2 1Þ
rðr2 1Þ ;

and chance-agreement probability with respect to unit i, pegji is given by:

pegji ¼ 1

q2 1

Xq
k¼1

rik

r
ð12 p̂kÞ;

To obtain equation (39), one should first derive a large-sample approximation of the

actual variance of ĝ1: This is achieved by considering that as the size n of the

participant sample increases, chance-agreement probability pejg converges to a fixed

probability Pejg and each classification probability p̂k converges to a constant pk. Let
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us define the following two vectors: p̂ ¼ ðp̂1; :::; p̂qÞ0 and p ¼ ðp1; :::;pqÞ0: One can

establish that:

pejg 2 Pejg ¼ 2

n

Xn
i¼1

ð pegji 2 PejgÞ þ Opðkp̂2 pkÞ;

ĝ1 ¼
ð pa 2 PejgÞ2 ð12 GgÞð pejg 2 PejgÞ

12 Pejg
þ Opðð pejg 2 PejgÞ2Þ;

where Gg ¼ ð pa 2 PejgÞ=ð12 PejgÞ. Combining these two expressions leads to a

linear approximation of ĝ1; which can be used to approximate the asymptotic

variance of ĝ1.
An alternative approach for estimating the variance of ĝ1 is the jackknife method.

The jackknife variance estimator is given by:

vJðĝ1Þ ¼ ð12 f Þn2 1

n

Xn
i¼1

ðĝði Þ1 2 ĝð†Þ1 Þ2; ð40Þ

where ĝði Þ1 represents the estimator ĝ1 computed after removing participant i from the

participant sample, and ĝð†Þ1 the average of all the ĝði Þ1 ’s:

8. Special case of two raters

Two-rater reliability studies are of special interest. Rating data in this case are often

conveniently reported using the distribution of participants by rater and response

category as shown in Table 1. Therefore, the inter-rater reliability coefficient and its

associated variance must be expressed as functions of the nkl’s.

For two raters classifying n participants into q response categories, Fleiss et al.

(1969) proposed an estimator vðĝkjNo agreementÞ for estimating the variance of

Cohen’s k-statistic under the hypothesis of no agreement between the raters. If there

exists an agreement between the two raters, Fleiss et al. recommended another variance
estimator vðĝkjAgreementÞ: These estimators are given by:

vðĝkjNo agreementÞ ¼ 12 f

nð12 pejkÞ2
Xq
k¼1

pBk pAk½12 ðpBk þ pAkÞ	2
(

þ
Xq
k¼1

Xq
1¼1
k–1

pBk pAlðpBk þ pAlÞ2 2 p2ejk

) ð41Þ

and

vðĝkjAgreementÞ ¼ 12 f

nð12 pejkÞ2
Xq
k¼1

pkk½12 ðpAk þ pBkÞð12 ĝkÞ	2
(

þ ð12 ĝkÞ2
Xq
k¼1

Xq
1¼1
k–1

pklð pBk þ pAlÞ2 2 ½ĝk 2 pejkð12 ĝkÞ	2
)
:

ð42Þ

Computing inter-rater reliability and its variance 43



It can be shown that vðĝkjAgreementÞ captures all terms of magnitude order up to

n21, is consistent for estimating the true population variance and provides valid

normality-based confidence intervals when the number of participants is reasonably

large.

When r ¼ 2, the variance of the AC1 statistic given in equation (39) reduces to the

following estimator:

vðĝ1Þ ¼ 12 f

nð12 pejgÞ2
pað12 paÞ2 4ð12 ĝ1Þ 1

q2 1

Xq
k¼1

pkkð12 p̂kÞ2 papejg

� !(

þ 4ð12 ĝ1Þ2 1

ðq2 1Þ2
Xq
k¼1

Xq
l¼1

pkl½12 ðp̂k þ p̂lÞ=2	2 2 p2ejg

� !)
:

ð43Þ

As for Scott’s p-estimator, its correct variance is given by:

vðĝpÞ ¼ 12 f

nð12 pejpÞ2
pað12 paÞ2 4ð12 ĝpÞ

Xq
k¼1

pkkp̂k 2 papejp

� !(

þ 4ð12 ĝpÞ2
Xq
k¼1

Xq
l¼1

pkl½ðp̂k þ p̂lÞ=2	2 2 p2ejp

� !) ð44Þ

For the sake of comparability, one should note that the correct variance of kappa can be

rewritten as follows:

vðĝkÞ ¼ 12 f

nð12 pejkÞ2
pað12 paÞ2 4ð12 ĝkÞ

Xq
k¼1

pkkp̂k 2 pa pek

� !(

þ 4ð12 ĝkÞ2
Xq
k¼1

Xq
l¼1

pkl½ðpAk þ pBlÞ=2	2 2 p2ejk

� !)
:

ð45Þ

The variance of the G-index is given by:

vðĝGÞ ¼ 4
12 f

n
pað12 paÞ: ð46Þ

Using the rating data of Table 3, I obtained the following inter-rater reliability estimates

and variance estimates:

Because the percentage agreement pa equals 94.4%, it appears that AC1 and G-index

are more consistent with the observed extent of agreement. The k and p statistics have
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low values that are very inconsistent with the data configuration and would be difficult

to justify. If the standard error is compared with the inter-rater reliability estimate, the

AC1 appears to be the most accurate of all agreement coefficients.

9. Monte-Carlo simulation

In order to compare the biases of the various inter-rater reliability coefficients under

investigation and to verify the validity of the different variance estimators discussed in

the previous sections, I have conducted a small Monte-Carlo experiment. This

experiment involves two raters, A and B, who must classify n (for n ¼ 20, 60, 80, 100)

participants into one of two possible categories ‘ þ ’ and ‘ 2 ’.

All the Monte-Carlo experiments are based upon the assumption of a prevalence rate
of Pr ¼ 95%. A propensity of random rating uA is set for rater A and another one uB for

rater B at the beginning of each experiment. These parameters allow us to use equation

(19) to determine the ‘true’ inter-rater reliability to be estimated. Each Monte-Carlo

experiment is conducted as follows:

. The n participants are first randomly classified into the two categories ‘ þ ’ and ‘ 2 ’

in such a way that a participant falls into category ‘ þ ’ with probability Pr .

. If a rater performs a random rating (with probabilities uA for rater A and uB for rater
B), then the participant to be rated is randomly classified into one of the two

categories with the same probability 1/2. A non-random rating is supposed to lead to

a correct classification.

. The number of replicate samples drawn in this simulation is 500.

Each Monte-Carlo experiment has two specific objectives, which are to evaluate the

magnitude of the biases associated with the agreement coefficients and to verify the

validity of their variance estimators.
The bias of an estimator is measured by the difference of its Monte-Carlo expectation

to the ‘true’ inter-rater reliability. The bias of a variance estimator, on the other hand, is

obtained by comparing its Monte-Carlo expectation with the Monte-Carlo variance of

the agreement coefficient. A small bias is desirable as it indicates that a given estimator

or variance estimator has neither a tendency to overestimate the true population

parameter nor a tendency to underestimate it.

In the simulation programmes, the calculation of the p-statistic and that of the

k-statistic were modified slightly in order to avoid the difficulty posed by undefined
estimates. When pejp ¼ 1 or pejk ¼ 1, these chance-agreement probabilities were

replaced with 0.99999 so that the agreement coefficient can be defined.

Table 5 contains the relative bias of the agreement coefficients ĝp; ĝk; ĝG, and ĝ1.
A total of 500 replicate samples were selected and for each sample s an estimate ĝs was

calculated. The relative bias is obtained as follows:

RelBiasðĝÞ ¼ 1

500

X500
s¼1

ĝs 2 g

� !
=g;

where g is the ‘true’ inter-rater reliability obtained with equation (19). It follows from

Table 5 that the relative bias of the AC1 estimator, which varies from20.8 to 0.0% when

uA ¼ uB ¼ 5%, and from 22.1 to 21.3% when uA ¼ 20% and uB ¼ 5%, is consistently
smaller than the relative bias of the other inter-rater reliability statistics. The p and k
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statistics generally exhibit a very large negative bias under current conditions, ranging

from 232.8 to262.5%. The main advantage of the AC1 statistic over the G-index stems

from the fact that when the rater’s propensity for random rating is large (i.e. around

35%), the bias of the G-index is at its highest, while that of the AC1 will decrease as the

trait prevalence increases.

Table 6 shows the Monte-Carlo variances of the four agreement statistics under

investigation, as well as the Monte-Carlo expectations of the associated variance

estimators. The Monte-Carlo expectation of a variance estimator v is obtained by

averaging all 500 variance estimates vs obtained from each replicate sample s. The

Monte-Carlo variance of an agreement coefficient ĝ, on the other hand, is obtained
by averaging all 500 squared differences between the estimates ĝs and their average.

More formally, the Monte-Carlo expectation E(v) of a variance estimator v is defined

as follows:

EðvÞ ¼ 1

500

X500
s¼1

vs;

while the Monte-Carlo variance V ðĝÞ of an agreement statistic ĝ is given by:

V ðĝÞ ¼ 1

500

X500
s¼1

½ĝs 2 averageðĝÞ	2:

It follows from Table 6 that the variance of the AC1 statistic is smaller than that of the

other statistics. In fact, V ðĝ1Þ varies from 0.07% when the sample size is 100 to 0.33%

Table 6. Monte-Carlo variances and Monte-Carlo expectations of variance estimates for

Pr ¼ 0:95 uð�ÞA ¼ u
ð�Þ
B ¼ 0:05

n VðĝpÞ% E½vðĝpÞ	% VðĝkÞ% E½vðĝkÞ	% VðĝGÞ% E½vðĝGÞ	% Vðĝ1Þ% E½vðĝ1Þ	%

20 15.8 3.3 15.0 3.13 0.79 0.78 0.32 0.33
60 6.0 3.9 5.9 3.83 0.28 0.31 0.10 0.12
80 3.9 3.0 3.8 3.00 0.24 0.23 0.09 0.09
100 2.5 2.4 2.5 2.39 0.17 0.19 0.07 0.07

(*) uA and uB represent the propensity for random rating of raters A and B, respectively.

Table 5. Relative bias of agreement coefficients for Pr ¼ 0:95 based on 500 replicate samples

uA, uB n BðĝpÞ% BðĝkÞ% BðĝGÞ% Bðĝ1Þ%

u
ð*Þ
A ¼ u

ð*Þ
B ¼ 5% 20 232.8 232.0 23.6 0.0

60 239.5 239.3 25.1 20.7
80 236.5 236.4 24.9 20.6
100 235.1 235.0 25.2 20.8

uA ¼ 20% uB ¼ 5% 20 262.5 259.9 211.9 22.1
60 258.4 257.0 211.7 21.4
80 258.2 256.9 212.1 21.6
100 257.4 256.3 211.6 21.3

(*) uA and uB represent the propensity for random rating of raters A and B, respectively.
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when the sample size is 20. The second smallest variance is that of the G-index, which

varies from 0.17 to 0.79%. The k and p statistics generally have larger variances, which

range from 2% to about 15%. An examination of the Monte-Carlo expectation of the

various variance estimators indicates that the proposed variance estimators for AC1 and

G-index work very well. Even for a small sample size, these expectations are very close

to the Monte-Carlo approximations. The variance estimators of the k and p statistics also

work well except for small sample sizes, for which they underestimate the ‘true’

variance.

10. Concluding remarks

In this paper, I have explored the problem of inter-rater reliability estimation when the

extent of agreement between raters is high. The paradox of the k and p statistics has

been investigated and an alternative agreement coefficient proposed. I have proposed

new variance estimators for the k, p and the AC1 statistics using the linearization and

jackknife methods. The validity of these variance estimators does not depend upon the

assumption of independence. The absence of such variance estimators has prevented

practitioners from constructing confidence intervals of multiple-rater agreement
coefficients.

I have introduced the AC1 statistic which is shown to have better statistical

properties than its k, p and G-index competitors. The k and p estimators became well-

known for their supposed ability to correct the percentage agreement for chance

agreement. However, this paper argues that not all observed ratings would lead to

agreement by chance. This will particularly be the case if the extent of agreement is high

in a situation of high trait prevalence. Kappa and pi evaluate the chance-agreement

probability as if all observed ratings may yield an agreement by chance. This may lead to
unpredictable results with rating data that suggest a rather small propensity for chance

agreement. The AC1 statistic was developed in such away that the propensity for chance

agreement is proportional to the portion of ratings that may lead to an agreement by

chance, reducing the overall agreement by chance to the right magnitude.

The simulation results tend to indicate that the AC1 and G-index statistics have

reasonably small biases for estimating the ‘true’ inter-rater reliability, while the k and p
statistics tend to underestimate it. The AC1 outperforms the G-index when the trait

prevalence is high or low. If the trait prevalence is around 50%, all agreement statistics
perform alike. The absolute bias in this case increases with the raters’ propensity

for random rating, which can be reduced by giving extra training to the raters.

The proposed variance estimators work well according to our simulations. For small

sample sizes, the variance estimators proposed for k and p statistics tend to under-

estimate the true variances.

References

Agresti, A. (2002). Categorical data analysis (2nd ed.). John Wiley & Sons, Inc., Hoboken, New

Jersey, USA.

Banerjee, M., Capozzoli, M., McSweeney, L., & Sinha, D. (1999). Beyond kappa: A review of

interrater agreement measures. Canadian Journal of Statistics, 27, 3–23.

Bishop, Y. V. V., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis.

Cambridge, MA: MIT Press.

Cicchetti, D. V., & Feinstein, A. R. (1990). High agreement but low kappa: II. Resolving the

paradoxes. Journal of Clinical Epidemiology, 43, 551–558.

Computing inter-rater reliability and its variance 47



Cochran, W. C. (1977). Sampling techniques (3rd ed.). New York: Wiley.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20, 37–46.

Cohen, J. (1968). Weighted kappa: Nominal scale agreement with provision for scaled

disagreement or partial credit. Psychological Bulletin, 70, 213–220.

Conger, A. J. (1980). Integration and generalization of kappas for multiple raters. Psychological

Bulletin, 88, 322–328.

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological

Bulletin, 76, 378–382.

Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted

kappa. Psychological Bulletin, 72, 323–327.

Holley, J. W., & Guilford, J. P. (1964). A note on the G index of agreement. Educational and

Psychological Measurement, 24, 749–753.

Hubert, L. (1977). Kappa revisited. Psychological Bulletin, 84, 289–297.

Kraemer, H. C. (1980). Ramifications of a population model for k as a coefficient of reliability.

Psychometrika, 44, 461–472.

Landis, R. J., & Koch, G. G. (1977). An application of hierarchical kappa-type statistics in the

assessment of majority agreement among multiple observers. Biometrics, 33, 363–374.

Light, R. J. (1971). Measures of response agreement for qualitative data: Some generalizations and

alternatives. Psychological Bulletin, 76, 365–377.

Quenouille, M. H. (1949). Approximate tests of correlation in times series. Journal of the Royal

Statistical Society, B, 11, 68–84.

Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding. Public

Opinion Quarterly, XIX, 321–325.

Tukey, J. W. (1958). Bias and confidence in not quite large samples. Annals of Mathematical

Statistics, 29, 614.

Received 6 January 2006; revised version received 14 June 2006

48 Kilem Li Gwet


