
CHAPTER
�

�
	8

Connecting R to Excel with the

xlsx Package

OBJECTIVE

This chapter shows how you can use the xlsx R package for creating, writing, styling

and editing Excel worksheets within RStudio. This package is an alternative to

the openxlsx package of chapter #7, and provides another high-level interface for

automating various Excel tasks with R. While the xlsx package offers some important

features not found in openxlsx, it also comes with its own limitations. This chapter

provides a detailed account of what you can do and cannot do with the xlsx package.

Contents

8.1 Introduction . 312

8.2 Analysis of Excel Data with R . 313

8.3 Manipulating Individual Cells . 321

8.3.1 Writing to and Reading from Cells 322

8.3.2 Formatting Individual Cells 331

8.3.3 More Worksheet Formatting Options 336

8.4 Options for Creating Cell Styles 343

8.5 Adding a Plot to an Excel Worksheet 349

8.6 Concluding Remarks . 351

- 311 -

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 312 - Chapter 8: Using the Xlsx R Package

8.1 Introduction

Before you can use the xlsx package for the first time, you need to install

and load it to your R environment. These 2 simple tasks are accomplished as

follows:

> install.packages("xlsx")

> library(xlsx)

If this installation fails, then you may need to install Java1 on your system, and

also make it work with RStudio. Depending on your system, you may have to

do some “googling” to find the tip that can help you resolve your problem. The

good news is that Java is a very popular programming language. Therefore,

a Java-related problem that you encounter has most likely been previously

resolved by others. But some Google search will generally be necessary to find

that solution. You do not need to know Java at all. But the xlsx package

needs to use it in the background.

For my Windows 11 system, I found useful instructions for installing Java by

following the link https://www.windows11.dev/ce7in/java-55a9. However,

after installing Java, I still could not make the R command library(xlsx)

work. It turned out that a patch needed to resolve this problem was made

available and could be downloaded from the link https://cran.r-project.

org/bin/windows/base/rpatched.html. Again doing some Google search was

essential for finding the solution.

To illustrate how the xlsx package connects R to Excel, I will use data

included in the chap8data.xlsx Excel workbook, which you can download

with the link https://bit.ly/3BcTgri. Note that this workbook is password-

protected, and can only be opened with the pasword "Mircrosoft365". You

will see in the next few paragraphs, how its content can be explored using some

powerful functions from the xlsx package. You will also see how easy it is to

1As previously mentioned, the xlsx package is dependent upon the Java programming
language.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://www.windows11.dev/ce7in/java-55a9
https://cran.r-project.org/bin/windows/base/rpatched.html
https://cran.r-project.org/bin/windows/base/rpatched.html
https://bit.ly/3BcTgri.

8.2. Analysis of Excel Data with R - 313 -

create new workbooks and populate them with data.

As previously indicated, all scripts are assumed to be saved in a project

directory. If needed, you may review section 3.3 of chapter 3, to learn how

project directories work in R.

8.2 Analysis of Excel Data with R

In this section, you will learn how to read Excel data into R, analyze it

within R, and write the analysis results back to Excel. All examples in this

section are assumed to use datasets and script files that are organized in a

project directory named xlsx and structured as in Figure 8.1. If you are going

to experiment with these examples, I advise that you first create such a project

directory. For more information regarding project directories in R, please refer

to section 3.3.2 or chapter 3.

Figure 8.1: Structure of the xlsx directory

The data subdirectory of project directory xlsx should contain an Excel

workbook chap6datasets.xlsx, which can be downloaded with link https:

//bit.ly/3giWj9m. This workbook is password protected. The password

Microsoft365 will be needed to unprotect it.

Script 8.1 starts by reading the “Quantitative Ratings” data table from

the IrrData worksheet of the chap6datasets.xlsx workbook. Figure 7.3 of

chapter 7 shows you what that dataset looks like. It is used afterwards in

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://bit.ly/3giWj9m
https://bit.ly/3giWj9m

- 314 - Chapter 8: Using the Xlsx R Package

the script to compute the summary table summary.df that shows the average

rating by Group and Target for each of the 4 variables, as well as the standard

deviation of these averages by Group only. This summary table (see the right

hand side of Figure 7.4 of chapter 7) is written to worksheet summaryStats1

of a new Excel workbook chap8data1.xlsx. The default worksheet location

to start writing this summary data is the top-left cell A1. The same summary

table is written again to another worksheet named summaryStats2, starting

this time from cell C5 in order to illustrate how to change the positioning of

your table. You can download the Excel workbook chap8data1.xlsx2 to see

the final dataset that Script 8.1 has produced.

I am now going to review the different segments of this script file, will intro-

duce the different functions it uses, and explain how they accomplish various

tasks.

Script 8.1. R Script for reading the chap6datasets.xlsx Excel workbook,
analyzing its data, and writing summary statistics to specific worksheets. (You
may download this script with the link: https://bit.ly/3g6unFE)

01 library(tidyverse)

02 library(xlsx)

03 passWD <- "Microsoft365"

04 wb.df1 <- loadWorkbook(file="./data/chap6datasets.xlsx",

05 password = passWD)

06 sht.names <- names(getSheets(wb.df1))

07 print(sht.names)

08

09 #-- Reading the password-protected Excel workbook -

10 irrData.df <- read.xlsx(file="./data/chap6datasets.xlsx",

11 sheetName = "IrrData",

12 rowIndex = c(2:17),colIndex = 19:24,

13 password = passWD)

14

15 #-- Compute the summary table

16 summary.df <- as_tibble(irrData.df) %>%

2Here is the download link: https://bit.ly/3TcIuIk

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://bit.ly/3g6unFE
https://bit.ly/3TcIuIk

8.2. Analysis of Excel Data with R - 315 -

17 group_by(Group,Target) %>%

18 summarise(across(c(J1,J2,J3,J4),mean)) %>%

19 mutate(across(c(J1,J2,J3,J4),sd,.names="gsd.{.col}")) %>%

20 ungroup() %>%

21 mutate(across(!c(Group,Target),round,3))

22 print(summary.df)

23

24 #-- Write the summary table to the input workbook

25 write.xlsx(x = as.data.frame(summary.df),

26 file="./data/chap8data1.xlsx",

27 sheetName = "summaryStats1",append = FALSE,

28 row.names = FALSE, password = passWD)

29

30 #- Write the summary.df at a specific location of the worksheet

31 wb.df1 <- loadWorkbook(file="./data/chap6datasets.xlsx",

32 password = "Microsoft365")

33 my.sheet <- createSheet(wb=wb.df1, sheetName="summaryStats2")

34 addDataFrame(x = as.data.frame(summary.df), sheet = my.sheet,

35 col.names = TRUE,row.names = FALSE,

36 startRow=3, startColumn=6)

37 saveWorkbook(wb.df1, file="./data/chap8data1.xlsx",

38 password = passWD)

39

40 #-- Delete the summaryStats2 worksheet if necessary

41 removeSheet(wb=wb.df1, sheetName = "summaryStats2")

42 saveWorkbook(wb.df1, file="./data/chap8delete.xlsx",

43 password = passWD)

End of Script

I am now going to review Script 8.1 by splitting it into chunks of code and

discussing how the analysis is done within each chunk. Script 8.2 contains the

first 6 lines of code from Script 8.1. Lines #01 and #02 load the 2 packages

I will need. The tidyverse package is needed to create the summary table,

whereas xlsx is used to manipulate Excel files.

Line #03 assigns the workbook password to variable passWD for later use.

Lines #04 and #05 create a workbook object (i.e. java object) named wb.df1

and which points to the Excel workbook I want to analyze. Note that the

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 316 - Chapter 8: Using the Xlsx R Package

loadWorkbook() function needs the password argument, since the workbook is

password-protected and the "file=" argument provides the path to the Excel

workbook.

Script 8.2. Create a workbook object that points to chap8data.xlsx

01 library(tidyverse)

02 library(xlsx)

03 passWD <- "Microsoft365"

04 wb.df1 <- loadWorkbook(file="./data/chap6datasets.xlsx",

05 password = passWD)

06 sht.names <- names(getSheets(wb.df1))

07 print(sht.names)

End of Script

Note that the openxlsx package that is covered in chapter 7 also of-

fers a version of the loadWorkbook() function. Although the func-

tion name is identical, both versions of this function have different

functionalities. In case you decide to load both packages (openxlsx

and xlsx) in the same script, always refer to the xlsx version of the

function as xlsx::loadWorkbook() and to the openxlsx version as

openxlsx::loadWorkbook().

In line #06, the getSheets() function is used to obtain a named list of java

objects that point to the worksheets contained in the workbook. The names()

function returns a character vector containing all worksheet names. Therefore,

executing line #07 will yield the following outcome:

> print(sht.names)

[1] "mtcars" "iris" "IrrData" "IccData" "CacData"

>

The second segment of Script 8.1 going from line #09 through #22 aims at

reading the Quantitative Ratings data table from the IrrData worksheet

and using it to create the summary table named summary.df.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

8.2. Analysis of Excel Data with R - 317 -

In lines #10 through #13, I use the read.xlsx() function to read the

"Quantitative Ratings" data into an R data frame called irrData.df. The

"file=" argument specifies the full Excel file pathname. The "sheetName="

argument provides the name of the worksheet that contains the input data.

"rowIndex=" and "colIndex=" specify respectively, the rows and columns

defining the data range of interest. If you look at the IrrData worksheet,

you will see that the Quantitative Ratings data table is located precisely

in that same range. Again, the passWD argument is needed only because, the

workbook chap6datasets.xlsx is password-protected.

The creation of the summary table summary.df in lines #16 through #21

was previously covered in chapter 4 (particularly in section 4.2.4). You can

play with this code to get a closer look at what is being done.

Script 8.3. Reading the workbook chap6datasets.xlsx and creating the
summary table summary.df

09 #-- Reading the password-protected Excel workbook -

10 irrData.df <- read.xlsx(file="./data/chap6datasets.xlsx",

11 sheetName = "IrrData",

12 rowIndex=c(2:17),colIndex=c(19:24),

13 password = passWD)

14

15 #-- Compute the summary table

16 summary.df <- as_tibble(irrData.df) %>%

17 group_by(Group,Target) %>%

18 summarise(across(c(J1,J2,J3,J4),mean)) %>%

19 mutate(across(c(J1,J2,J3,J4),sd,.names="gsd..col")) %>%

20 ungroup() %>%

21 mutate(across(!c(Group,Target),round,3))

22 print(summary.df)

End of Script

The next segment of Script 8.1 uses the write.xlsx() function to write the

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 318 - Chapter 8: Using the Xlsx R Package

summary.df data frame to the summaryStats1 worksheet included in an Excel

workbook named chap8data1.xlsx. If this workbook does not exist, then it

will be created. If it exists, you will need to close it before it can be updated.

Otherwise, R will generate an error message.

Script 8.4. Writing the summary.df dataset to the summaryStats1 worksheet

24 #-- Write the summary table to the input workbook

25 write.xlsx(x = as.data.frame(summary.df),

26 file="./data/chap8data1.xlsx",

27 sheetName = "summaryStats1",append = FALSE,

28 row.names = FALSE, password = passWD)

End of Script

There are a few additional things you must know when using the write.xlsx()

function of the xlsx package:

� The x argument in line #25, specifies the data frame that you want to

write to Excel. However, the write.xlsx() function works best when

this argument is an R data frame, and not a tibble. Since summary.df was

created by the tidyverse package, it is necessarily a tibble and needed to

be converted to a data frame object with the as.data.frame() function,

before it is passed to the function.

� What is done in line #27, must be well understood. I used the 2 arguments

"sheetName=" and "append=". Note that by default, the "append="

argument is set to FALSE. In this case, if the workbook defined by the

"file=" argument already exists, then it will be destroyed and replaced

by a new one containing the only sheet defined by the "sheetName="

argument. If it does not exist, then it will be created, and the "append="

argument will not play any role.

When append=TRUE, then if the worksheet defined by the sheetName=

argument does not already exist, it will be added to the other worksheets

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

8.2. Analysis of Excel Data with R - 319 -

already present in the workbook. If it already exists, then R will produce

an error message because it cannot add a new worksheet with a name

that already exists in the same workbook.

The write.xlsx() function is practical for writing a data frame to

a worksheet. However, it does not allow you to position that data at

a location of your choice on the worksheet. That data will have to be

written starting from cell A1. The addDataFrame() function is a

more flexible alternative.

In the next segment of the main script file labeled as Script 8.5, I will

write the summary.df data frame to a new worksheet named summaryStats2

in such a way that the top-left corner of the data table is positioned at the

cell defined by row #3 and column #6. This task is accomplished using a new

function addDataFrame(). The objective is to show you how the positioning

of a data table in a worksheet can be modified.

Script 8.5. Writing data to a specific cell range on the worksheet

30 #- Write the summary.df at a specific worksheet location

31 wb.df1 <- loadWorkbook(file="./data/chap6datasets.xlsx",

32 password = "Microsoft365")

33 my.sheet <- createSheet(wb=wb.df1,sheetName="summaryStats2")

34 addDataFrame(x = as.data.frame(summary.df), sheet=my.sheet,

35 col.names = TRUE,row.names = FALSE,

36 startRow=3, startColumn=6)

37 saveWorkbook(wb.df1, file="./data/chap8data1.xlsx",

38 password = passWD)

End of Script

In lines #31 and #32 of Script 8.5, I update the workbook object wb.df1 by

reloading the Excel file chap6datasets.xlsx. Otherwise, wb.df1 will continue

pointing to the old version of the workbook. Remember that this workbook was

modified by Script 8.4 after the summaryStats1 worksheet was created. In line

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 320 - Chapter 8: Using the Xlsx R Package

#33, the createSheet() function is used to create a worksheet object named

my.sheet, which points to a newly-created worksheet named summaryStats2.

In lines #34 through #36, the addDataFrame() function is used to write

the summary.df data frame to the newly-created worksheet object my.sheet.

Note that the x argument representing the data frame is assigned the value

as.data.frame(summary.df) instead of summary.df. It is because summary.df

was created as a tibble in line #16, and must be converted to the R data

frame format to make it compatible with the addDataFrame() function. The

"startRow=" and "startColumn=" arguments are needed to define the location

of the left-top corner of the data table on the worksheet.

So far, your work has been done using workbook and worksheet objects, and

not actual files. Therefore, you need to save it to the actual Excel workbook

chap8data1.xlsx. This task is performed in lines #37 and #38. Assigning

passWD to the password= argument will password-protect your workbook. To

remove the password protection, replace passWD with NULL. Alternatively, you

can use an arbitrary string value such as "newPassWord" to create a new pass-

word.

Finally, Script 8.6 is the segment of the main Script 8.1 that shows you how

to delete a specific worksheet from a workbook. Line #41 shows you how to use

the removeSheet() function to delete the summaryStats2 worksheet. Since

this function acts upon a workbook object and not on an actual Excel work-

book, it is necessary to save the workbook object as an actual Excel workbook

after deletion, as shown in lines #42 and #43. After deleting the summaryStats2

worksheet, the associated workbook is saved in line #42 as chap8delete.xlsx.

This workbook can be downloaded using the link https://bit.ly/3TrG7Sd.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://bit.ly/3TrG7Sd

8.3. Manipulating Individual Cells - 321 -

Script 8.6. Deleting a specific worksheet

40 #-- Delete the summaryStats2 worksheet if necessary

41 removeSheet(wb=wb.df1, sheetName = "summaryStats2")

42 saveWorkbook(wb.df1, file="./data/chap8delete.xlsx",

43 password = passWD)

End of Script

So far, you have used existing Excel workbooks from which you could

read data into R, and to which you could write data frames. Even if

you do not have Excel data to read, you may still want to export an

R data frame to Excel. In this case, you need to create a workbook

object in R as follows: my.workbook <- createWorkbook(). This

creates a workbook object named my.workbook, which you can used

to export your data to Excel.

8.3 Manipulating Individual Cells

In section 8.2, you learned to export R data frames to Excel. However, there

are times when you need to write various R objects to specific cells or range

of cells on a worksheet. You may also want to read values from specific cells

for further processing. When preparing your analysis report in Excel, some

cell formatting with the use of special fonts, colors and border types is often

necessary. For example, you may need to add a caption to a data table by

assigning a string of characters to a specific cell, before doing some formatting.

Therefore, you need to know how to define an Excel cell in R, assign a value

to it and save the workbook on the disk.

In section 8.3.1, you will learn to write to and read from Excel worksheet

cells. Section 8.3.2 will show you how to add formatting styles to cells when

preparing a report.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 322 - Chapter 8: Using the Xlsx R Package

8.3.1 Writing to and Reading from Cells

A typical cell belongs to a row and a column, both of which are part

of a worksheet included with other worksheets in a workbook. Therefore, the

definition of an Excel cell in R depends on a prior definition of a workbook

object, a worksheet object, and a row object. The cell object will then be

defined by specifying which column number or column numbers within a given

row object are used to identify the cells the object will point to.

Consider the Excel workbook chap8data1.xlsx3, which contains 2 work-

sheets named summaryStats1 and summaryStats2. Note that these are the

same 2 worksheets that were previously created after running Script 8.1. They

both contain the same data table. Only the positioning of the table on the

worksheets differ. In the summaryStats2 worksheet, the leftmost corner of the

table is located in cell C5 as shown in Figure 8.2. This Excel workbook is used

as input file in the next example.

1
2
3
4
5
6
7
8
9
10

A B C D E F G H I J K L

Group Target J1 J2 J3 J4 gsd.J1 gsd.J2 gsd.J3 gsd.J4
A 1 5.5 2.333 3.833 3.333 1.768 0.471 0.589 2.593
A 2 8 1.667 3 7 1.768 0.471 0.589 2.593
B 3 8.333 4.333 6 7.333 1.251 1.494 1.31 1.333
B 4 7 1.833 3.667 6 1.251 1.494 1.31 1.333
B 5 9.5 4.5 5.867 8.667 1.251 1.494 1.31 1.333

Figure 8.2: Data table without caption in the summaryStats2 worksheet of
workbook chap8data1.xlsx

I like to develop an R script that will achieve the following objectives:

� A caption must be added to the summary table in the "summaryStats2"

worksheet in a location that is determined by the range of cells C1:H4

3It is downloadable with the link: https://bit.ly/3TcIuIk

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://bit.ly/3TcIuIk

8.3. Manipulating Individual Cells - 323 -

(see Figure 8.3). The workbook will be saved under the new name

chap8data2.xlsx. You will see how to write text to an empty cell.

� The second objective of the R script is to add to a comment in cell C12

of worksheet summaryStats2, which says “Score that Judge3 assigned to

subject 1 is: 3.833.” (see Figure 8.4) The revised workbook will be saved

under the name chap8data3.xlsx. This example shows you how to read

the content of a specific cell without having to read the entire worksheet

into an R data frame.

1
2
3
4
5
6
7
8
9

10

A B C D E F G H I J K L
Table 1: Mean Ratings by Group and Target, and

Group-level standard deviations
(Author: Kilem L. Gwet)

Group Target J1 J2 J3 J4 gsd.J1 gsd.J2 gsd.J3 gsd.J4
A 1 5.5 2.333 3.833 3.333 1.768 0.471 0.589 2.593
A 2 8 1.667 3 7 1.768 0.471 0.589 2.593
B 3 8.333 4.333 6 7.333 1.251 1.494 1.31 1.333
B 4 7 1.833 3.667 6 1.251 1.494 1.31 1.333
B 5 9.5 4.5 5.867 8.667 1.251 1.494 1.31 1.333

Figure 8.3: Data table with caption in the summaryStats2 worksheet of
workbook chap8data2.xlsx

Figure 8.4: Data table with caption and revised column labels, in the
summaryStats2 worksheet of workbook chap8data3.xlsx

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 324 - Chapter 8: Using the Xlsx R Package

Here is the R script file that allows you to achieve the 2 goals set above:

Script 8.7. R Script for adding a caption to a data table (Download this script
with the link: https://bit.ly/3TRAkpo)

01 library(xlsx)

02 passWD <- "Microsoft365"

03 wb.df <- loadWorkbook(file="./data/chap8data1.xlsx",

04 password = passWD)

05 my.sheets <- getSheets(wb.df)

06 print(names(my.sheets))

07

08 #-- create a range of cells to receive the title

09

10 tit.rows <- createRow(my.sheets[[2]], rowIndex=1:4)

11 tit.cells <- createCell(row=tit.rows, colIndex=3:8)

12

13 #-- write title in the first 3 rows and save workbook

14

15 setCellValue(tit.cells[[1,1]],

16 "Table 1: Mean Ratings by Group and Target, and")

17 setCellValue(tit.cells[[2,2]],

18 "Group-level standard deviations")

19 setCellValue(tit.cells[[3,1]],"(Author: Kilem L. Gwet)")

20

21 saveWorkbook(wb.df, file="./data/chap8data2.xlsx")

22

23 #-- change the first 6 column labels in the first row

24

25 wb.df <- loadWorkbook(file="./data/chap8data2.xlsx")

26 my.sheets <- getSheets(wb.df)

27 print(names(my.sheets))

28 clabels.rows <- getRows(sheet = my.sheets[["summaryStats2"]],

29 rowIndex=5)

30 clabs.cells <- getCells(row=clabels.rows,colIndex = 3:8)

31 setCellValue(clabs.cells[["5.3"]],"Section")

32 setCellValue(clabs.cells[["5.4"]],"Subject")

33 setCellValue(clabs.cells[["5.5"]],"Judge1")

34 setCellValue(clabs.cells[["5.6"]],"Judge2")

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://bit.ly/3TRAkpo

8.3. Manipulating Individual Cells - 325 -

35 setCellValue(clabs.cells[["5.7"]],"Judge3")

36 setCellValue(clabs.cells[["5.8"]],"Judge4")

37

38 #-- Add comment line in row #12

39

40 sub1.rows <- getRows(sheet = my.sheets[[2]], rowIndex=6)

41 sub1.cells <- getCells(row=sub1.rows,colIndex = 3:12)

42 ct.rows <- createRow(my.sheets[[2]], rowIndex=12)

43 ct.cells <- createCell(row=ct.rows, colIndex=1:8)

44 j3score <- getCellValue(sub1.cells[["6.7"]])

45 footnote = paste0("Score that Judge3 assigned to subject 1 is: ",

46 j3score)

47 setCellValue(ct.cells[[1,3]],footnote)

48

49 saveWorkbook(wb.df, file="./data/chap8data3.xlsx")

End of Script

In line #01, the xlsx package is loaded to your R environment (it is assumed

that this package has previously been installed on your machine), and in line

#02, the input workbook’s password is assigned to the passWD variable. Lines

#03 and #04 use the loadWorkbook() function to create a workbook object

that points to the input Excel workbook chap8data1.xlsx.

In line #05, the getSheets() function returns the following named list of
worksheet java objects pointing to the 2 worksheets of interest:

> my.sheets

$summaryStats1

[1] "Java-Object{Name: /xl/worksheets/sheet1.xml - Content Type:

application/vnd.openxmlformats-officedocument.spreadsheetml.worksheet+xml}"

$summaryStats2

[1] "Java-Object{Name: /xl/worksheets/sheet2.xml - Content Type:

application/vnd.openxmlformats-officedocument.spreadsheetml.worksheet+xml}"

Therefore, my.sheets is a two-element named list. The description of each

of these elements starts with the dollar ($) sign followed by the worksheet

name. For example, $summaryStats1 indicates that the first list element is

named summaryStats1. The second part of the list element is the java object

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 326 - Chapter 8: Using the Xlsx R Package

description in a special lingo that only the xlsx package needs to understand.

Line #06 uses the names() function to extract only the names associated with

the named list elements and return a vector of worksheet names. This function

can prove useful if the number of worksheets in your workbook is very large to

be manipulated manually.

Writing the table caption in the first 3 rows

Before I explain what line #10 does, remember that the table caption must

be written in the range of cells C1:H4 (see Figure 8.2). Therefore, you must

create a cell object that points to that range. This is precisely the task that

is undertaken in lines #10 and #11 in a 2-step process where a list of row

objects tit.rows pointing to the 4 rows 1:4 is first created in lines #10 using

the createRow() function. In line #11, I used the createCells() function to

create a named list of cell objects tit.cells based on the tit.rows list of row

objects, by specifying the columns of interest 3:8 in the colIndex= argument.

It is the tit.cells object that points to the target range of cells where the

table caption will be written. For a more comprehensive list of functions needed

to create new Excel objects or update cell objects, see Figure 8.6. For a list of

functions often used to access existing Excel objects, see Figure 8.5.

Now that the range of cells needed to write the table caption has been de-

fined by the list of the cell objects tit.cells, you need a way of accessing these

individual cells. Note that tit.cells is a matrix of Java objects, each of which

pointing to one of the 24 cells (4 rows × 6 columns) you have “booked” for

the caption. Here is an extract of what R will display on the console if you

print out the content of the tit.cells variable:

> tit.cells

3

1 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

2 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

3 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

4 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

4

1 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

8.3. Manipulating Individual Cells - 327 -

2 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

3 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

4 <S4 class 'jobjRef' [package "rJava"] with 2 slots>

In total, you will have 6 such blocks of 4 objects each (only 2 are displayed

here). Each block represents one of the columns of the 4×6 matrix of cell

objects. Note that these blocks are numbered 3, 4, 5, 6, 7 and 8 corresponding

to the actual column numbers on your Excel worksheet. However, cell C1 will

be referred to as tit.cells[[1,1]]. It is because column #3 of the worksheet

represents the first column in the range of cells defined by tit.cells.

In lines #15 and #16, I use the setCellValue() function to assign the first

title line to cell C1. You can see from Figure 8.3 that cell C1 is associated with

the matrix element tit.cells[[1,1]]. The same function is used again in

lines #17-#19 to write the remaining title lines.

Note that the setCellValue() function writes the title to an Excel object

located in the computer memory. Therefore, you need to save that information

on the disk so that it becomes accessible outside of the R environment. The

saveWorkbook() function is used in line #21 to export the content of the wb.df

workbook object to an Excel workbook named chap8data2.xlsx. Figure 8.3

shows you what the ssummaryStats2 worksheet of the chap8data2.xlsx work-

book looks like.

Changing the first 6 column labels

Suppose that you want to change the first 6 column labels of the summary

table of Figure 8.3 to what is shown in Figure 8.4. That is, you want the la-

bels Group, Target, J1, J2, J3, J4 to be changed to Section, Subject,

Judge1, Judge2, Judge3, Judge4 without having to read ssummaryStats2

data. This task is accomplished in lines #25-#36.

What is done in lines #25-#27 has already been previously discussed, and

will not be covered here. The purpose of lines #28-#30 is to define the range of

cells "C5:H5" as an Excel object that can further be manipulated. Since these

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 328 - Chapter 8: Using the Xlsx R Package

cells have already been used and are therefore not empty, you will create the

Excel objects using the getRows() and the getCells() functions as opposed

to the createRow() and createCell() used previously.

I must stress out that the createCell() function always returns a

matrix of cell objects, whose elements are referenced as cells[[3,2]]

for example. However, the getCells() function always returns a

named list of cell objects, whose elements are referenced as cells[["3.2"]]

for example.

If you print out the Excel object clabs.cells created in line #30, you will
obtain the following named list of 6 elements:

> clabs.cells

$`5.3`

[1] "Java-Object{Section}"

$`5.4`

[1] "Java-Object{Subject}"

$`5.5`

[1] "Java-Object{Judge1}"

$`5.6`

[1] "Java-Object{Judge2}"

$`5.7`

[1] "Java-Object{Judge3}"

$`5.8`

[1] "Java-Object{Judge4}"

These elements are named "5.3", "5.4", "5.5", "5.6", "5.7", "5.8"

and are used in lines #31-#36 to make the changes that you were after.

Adding a comment line in row #12

To finalize the summary table of Figure 8.4, I need to add the comment line

in row #12, which says "Score that Judge3 assigned to subject 1 is:

3.833". To this end, you first need to read the score the Judge3 assigned to

subject 1 in row #6. Therefore, you need to define 2 Excel objects. One object

named sub1.cells, is defined in line #41 of Script 8.7 and points to the range

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

8.3. Manipulating Individual Cells - 329 -

of cells "C6:L6", which contains all subject 1’s scores (including judge3’s)4.

The second object named ct.cells is defined in line #43 and points to the

range of cells "A12:H12", where the command line will be written5.

Function Description Example

loadWorkbook(file,
 xlsxFile = NULL,
 isUnzipped = FALSE)

loadWorkbook creates a java object
reference corresponding to the Excel
workbook to load.

wb <- loadWorkbook(file =
 "./data/wbexample.xlsx")

getSheets(wb)

getSheets returns a list of java object
references each pointing to an
worksheet. The list is named with the
sheet names

sheets <- getSheets(wb)

getRows(sheet,
 rowIndex = NULL)

getRows returns a list of java object
references each pointing to a row. The
list is named with the row number

rows <- getRows(sheet)
get all the rows

getCells(row, colIndex = NULL,
 simplify = TRUE)

getCells returns a list of java object
references for all the cells in the row if
colIndex is NULL. If you want to extract
only a specific columns, set colIndex to
the column indices you are interested.

cells <- getCells(rows)
returns all non empty cells

getCellValue(cell,
 keepFormulas = FALSE,
 encoding = "unknown")

getCellValue returns the value in the cell
as an R object. Type conversions are
done behind the scene. This function is
not vectorized.

value <- getCellValue(cell)

removeSheet(wb object,
 sheetName)

Delete a specific worksheet from a given
workbook

removeSheet(wb,
 sheetName = "Sheet1")

Figure 8.5: Functions that allow you to access existing Excel objects

The sub1.cells object is created with the getCells() function because

row #6 already exists (i.e. is not empty) and needs not be created. However,

the situation is different with row #12, which is empty and must be created.

Therefore the ct.cells object must be created with the createCell() func-

tion.

In line #44, the score that subject 1 received from judge3 is assigned to

4Technically speaking, you can define sub1.cells to point to cell "G6" only.
5Since the comment line is written in cell "C12", you could well points this object directly

to that cell.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 330 - Chapter 8: Using the Xlsx R Package

the j3score variable. This variable is used in line #46 during the creation of

the footnote variable, which contains the comment line that you want. The

content of this footnote variable is written to cell "C12" in line #47 using the

setCellValue() function. Finally the revised spreadsheet is saved in a new

Excel workbook named chap8data3.xlsx in line #49.

Function Description Example

createWorkbook()
createWorkbook returns a java
object reference pointing to an
empty workbook object

wb <- createWorkbook()

createSheet()
createSheet returns a worksheet
object

sheet1 <- createSheet(wb, "Sheet1")

createRow(sheet, rowIndex = 1:5)
createRow() creates a list of
java objects, each pointing to a
row.

rows <- createRow(sheet1,
rowIndex=1:10) # 10 rows

createCell(row, colIndex = 1:5)

createCell creates a matrix of
lists, each element of the list
being a java object reference to
an object of type Cell
representing an empty cell.

cells <- createCell(rows, colIndex=1:8)
8 columns

setCellValue(cell, value,
richTextString = FALSE, showNA
= TRUE)

setCellValue writes the content
of an R variable into the cell.

setCellValue(cell1, 1)
add value 1 to cell A1

Figure 8.6: Functions to create Excel objects and update cell objects

Script 8.8 shows how you can use the functions in Figure 8.6 to create

a new Excel workbook named "New Excel Workbook.xlsx" from within R.

This script also adds a worksheet named "WorkSheet-1", and writes the text

"Workbook created from within R" in cell "C2".

In line #02, I creates an empty workbook object named my.wb with the

createWorkbook() function. Line #03 uses the createSheet() function to

create a worksheet object named my.sheet that points to a single worksheet

named "WorkSheet-1" in the workbook object my.wb. Line #04 creates a list

of 3 row objects, whereas line #05 creates a 3 × 15 matrix named my.cell,

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

8.3. Manipulating Individual Cells - 331 -

each element of which is a cell object. For example, my.cell[[2,3]] allows

you to access the cell defined by row 2 and column 3, which is cell "C2".

Therefore, you would assign the string "Workbook created from within R"

to cell "C2" using the setCellValue() function as shown in line #06. The

workbook created at this stage exists only inside the computer memory. The

saveWorkbook() function of line #07 is what you need to write the workbook

object my.wb to the disk and give it the name "New Workbook.xlsx."

Script 8.8. R Script for creating a new Excel worksheet from within R (Down-
load this script with the link: https: // bit. ly/ 3DcxSUn)

01 library(xlsx)

02 my.wb <- createWorkbook()

03 my.sheet <- createSheet(wb=my.wb, sheetName="WorkSheet-1")

04 my.row <- createRow(sheet=my.sheet, rowIndex = 1:3)

05 my.cell <- createCell(row=my.row, colIndex = 1:15)

06 setCellValue(my.cell[[2,3]],"Workbook created from within R")

07 saveWorkbook(wb=my.wb, file="./data/New Excel Workbook.xlsx")

End of Script

8.3.2 Formatting Individual Cells

In section 8.3.1, you learned how to assign values to specific cells, and

write captions to data tables. In section 8.2, the focus was on writing R data

frames to Excel worksheets. In this section, I will show you 2 things:

1 You will learn how to write R vectors and matrices to Excel. This requires

that you become familiar with the manipulation of ranges of cells or blocks

of cells.

2 I will show you how you can do basic cell formatting to highlight specific

cells conditionally upon their content.

Let us start with a concrete example and create a 10 × 6 matrix of random

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://bit.ly/3DcxSUn

- 332 - Chapter 8: Using the Xlsx R Package

numbers6. Ultimately, I want to print that matrix to an Excel worksheet within

the range of cells B3:K19. The final appearance of the worksheet is shown in

Figure 8.7. All negative numbers in the matrix are automatically written in

yellow and highlighted in blue. The sequential numbers in row #3 and in column

B delineate the initial range of cells (or cell block in R jargon) within which I

decided to work.

Figure 8.7: Worksheet cells formatted programmatically with the xlsx

package

To create the worksheet of Figure 8.7, one option is to execute Script 8.9.

I am now going to review step by step what this script file does.

� Line #01 loads the xlsx package into your R environment.

� In line #02, I create a workbook object named my.wb, which you can see

as a workbook that resides inside the computer memory.

6These random numbers are generated from the Normal distribution with mean 2.5 and
standard deviation 3.7. The Normal distribution plays no special role here. What matters
is the 10× 6 table of numbers.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

