CHAPTER 7

Connecting R to Excel with the Openxlsx Package

OBJECTIVE

This chapter shows how you can use the **openxlsx** R package for creating, writing, styling and editing Excel worksheets within RStudio. This package provides a very useful high-level interface for automating various Excel tasks with R.

Contents

7.1	Introdi	<i>iction</i>
7.2	Readin	g an Excel Workbook into an R Data Frame \ldots \ldots 272
7.3	Writing	g an R Object to Excel
	7.3.1	Writing an R Object to an Excel Worksheet
	7.3.2	Changing the Color of Worksheet Tabs
	7.3.3	Alternative Methods for Writing a Data Frame to Excel 288
7.4	Forma	tting Individual Cells
7.5	Insertii	ng R Graphs Into an Excel Worksheet $\ldots \ldots \ldots \ldots 305$
7.6	Conclu	ding Remarks

- 272 – Chapter 7: Using the Openxlsx R Package

7.1 Introduction

The openxlsx package is one option for creating, formatting and interacting with Excel files. It provides a high-level interface for writing, styling and editing Excel worksheets from within R. One reason why openxlsx is my preferred package for interacting with Excel is that, unlike its competitors, it does not depend on another software such as Java. Moreover, I found its use to be more intuitive.

Before you can use this package for the first time, you need to install it from the R console as follows:

> install.packages("openxlsx", dependencies = TRUE)

If you want to determine which version of the package has been installed, key in the command > packageVersion("openxlsx") on the console. After doing it, I obtained the following outcome: [1] '4.2.5'. It indicates that openxlsx 4.2.5 is installed on my system.

Once the package installation is complete, load it into your R environment to make all of its functions available for use by your R scripts. This task is accomplished as follows:

> library(openxlsx)

Throughout this chapter, I will review the most important functions that you will need to create workbooks or edit worksheets.

7.2 Reading an Excel Workbook into an R Data Frame

Consider an Excel file named chap7data.xlsx, which you can download from the link https://bit.ly/3CBdVqm. This Excel workbook contains 5 worksheets "mtcars," "iris," "IrrData," "IccData," and "CacData." With the openxlsx package, you can either read the entire content of a given worksheet,

7.2. Reading an Excel Workbook into an R Data Frame

- 273 -

or read a specific range of data of a chosen worksheet. Reading a worksheet in its entirety, assumes that its content is a well-organized data table (e.g. "mtcars" or "iris"). The worksheet named "IrrData" on the other hand, contains 3 independent tables. Therefore, each of the them should be read by specifying the range of cells that defines its content. Let us consider the following example:

Example 7.1 _

Suppose that you want to read the iris worksheet (see Figure 7.1) in its entirety into an R data frame named iris.df. To perform this task, the openxlsx package offers the 2 functions read.xlsx() and readWorkbook(), both of which have a similar functionality.

I wrote Script 7.1, a script file that performs this task. I assume that this script file is located in the root directory of an RStudio project folder¹. This project folder also has a subfolder called data, where the Excel file chap7data.xlsx is located.

The first 2 lines of this script file loads the tidyverse and openxlsx packages. The 3rd line uses the read.xlsx() function to read the iris worksheet of the Excel file into a data frame named iris.df. This data frame is then converted to the tibble format in line #05, for convenience and to make it more compatible with the tidyverse collection of packages. Executing this script file will yield the iris.df data frame, an extract of which is shown in Table 7.1.

- The read.xlsx() function uses 2 arguments. The "xlsxFile=" argument refers to the full Excel file path name, which includes its directory. The sheet= argument contains the name associated with the worksheet you want to read.
- The "xlsxFile=" argument can also be an R workbook object. Example 7.2 shows you how R workbook objects are created.

 $^{^1\}mathrm{To}$ learn more about project directories, it could be helpful to review the material in section 3.3 of chapter 3

274

Chapter 7: Using the Openxlsx R Package

• The sheet= argument can also be the worksheet sequential number (1,2,...) associated with the order in which they appear in the workbook. For example, the argument sheet=2 will still refer to the iris worksheet, because it is the second worksheet in the workbook. This feature gives you access to worksheets without knowing their respective names.

	А	В	С	D	E
1	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
2	5.1	3.5	1.4	0.2	setosa
3	4.9	3	1.4	0.2	setosa
4	4.7	3.2	1.3	0.2	setosa
5	4.6	3.1	1.5	0.2	setosa
6	5	3.6	1.4	0.2	setosa
7	5.4	3.9	1.7	0.4	setosa
8	4.6	3.4	1.4	0.3	setosa
9	5	3.4	1.5	0.2	setosa
10	4.4	2.9	1.4	0.2	setosa
11	4.9	3.1	1.5	0.1	setosa
12	5.4	3.7	1.5	0.2	setosa
13	4.8	3.4	1.6	0.2	setosa
14	4.8	3	1.4	0.1	setosa
15	4.3	3	1.1	0.1	setosa
16	5.8	4	1.2	0.2	setosa
17	5.7	4.4	1.5	0.4	setosa
18	5.4	3.9	1.3	0.4	setosa
19	5.1	3.5	1.4	0.3	setosa
20	F7	2.0	1 7	0.0	

Figure 7.1: Extract of the iris worksheet^{*a*} from the workbook chap6datasets.xlsx

 $^{^{}a}$ The iris worksheet has 150 rows of data.

Get the entire ebook for \$9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

7.2. Reading an Excel Workbook into an R Data Frame

Script 7.1. Reading the iris

```
01 library(tidyverse)
02 library(openxlsx)
03 iris.df <- read.xlsx(xlsxFile = "./data/chap7data.xlsx",
04 sheet = "iris")
05 iris.df <- as_tibble(iris.df)
06 iris.df</pre>
```

_ End of Script ____

Note that R packages other than **openxlsx** offer functions with the same name **read.xlsx()**. This will create a conflict. If this happens, then the solution would be to call the read.xlsx() functions as follows: **openxlsx::read.xlsx()**.

Table 7.1 : Extract of the iris.df R Dataset

# A ·	tibble: 150 x 🗄	5			
Se	pal.Length Sepa	al.Width	Petal.Length	Petal.Widt	h Species
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
#	. with 140 more	e rows			

275

- 276 -

Chapter 7: Using the Openxlsx R Package

Example 7.2 _____

Reading the contingency table in the IrrData worksheet

As previously mentioned, the IrrData worksheet contains 3 data tables. These are the "Contingency Table," the "Categorical Ratings," and the "Quantitative Ratings." To only read the "Contingency Table", shown in Figure 7.2, you need to formulate a more descriptive request in your R script.

- Script 7.2 reads the Contingency Table portion of the IrrData worksheet into the irrdata.df data frame. Table 7.3 shows the content of irrdata.df.
- The first 2 lines of this script file load the tidyverse and openxlsx packages.
- In line #03, the loadWorkbook() function of the openxlsx package is used to create an R workbook object named wb.df1, which points to the Excel workbook chap7data.xlsx.
- Line #04 uses the names() function to list all worksheets included in the workbook identified by the workbook object wb.df1. This function can be useful for verification purposes.
- Line #05 reads the Excel workbook into a data frame named irrdata.df, using the readWorkbook() function. This time, I have not used the read.xlsx() function as before. As a matter of fact, both functions can be used interchangeably. The "xlsxFile=" argument of this function is assigned the workbook object previously created by the loadWorkbook() function. The "sheet=" argument specified the worksheet you want to read. The 2 arguments rows = 2:12, and cols = 1:11 tell R to read the range of cells defined by rows 2 through 12 and columns 1 through 11 (see Figure 7.2). You can actually select non-contiguous rows. For example, rows = c(2,3,6,8), and cols = 1:11 will yield the small data frame of Table 7.2

7.2. Reading an Excel Workbook into an R Data Frame

Example 7.2 shows how convenient it is to manipulate Excel data from within R, without touching the original data. A manual extraction of specific rows, columns or cells from within Excel would be tedious and error-prone. Even if you were to use Excel VBA, which is Excel's macro programming language, this task would still be laborious.

A1	A1 \cdot : \times \checkmark f_x Contingency Table												
	А	В	С	D	E	F	G	Н	I.	J	К	L	
1	1 Contingency Table												
2	Categories	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10		
3	C1	0	6	12	7	14	19	9	0	1	1		
4	C2	20	188	12	11	8	8	7	5	2	4		
5	C3	19	14	80	15	7	8	7	8	4	3		
6	C4	0	17	16	482	12	15	14	5	1	2		
7	C5	19	18	6	4	620	17	0	9	10	6		
8	C6	11	4	19	7	1	11	17	17	1	7		
9	C7	7	9	6	7	16	8	472	13	8	5		
10	C8	9	7	0	6	13	2	2	9	10	6		
11	C9	1	6	1	9	10	11	5	18	120	23		
12	C10	0	3	9	11	2	10	18	5	14	622		
13													
14													

Figure 7.2: Distribution of 3380 subjects by category

Script 7.2. Reading a contingency table from the IrrData worksheet in the chap7data.xlsx workbook

```
01 library(tidyverse)
02 library(openxlsx)
03 wb.df1 <- loadWorkbook(file="./data/chap7data.xlsx")
04 names(wb.df1)
05 irrdata.df <- readWorkbook(xlsxFile=wb.df1,sheet="IrrData",
06 rows = 2:12,cols = 1:11)
07 irrdata.df <- as_tibble(irrdata.df)
08 irrdata.df</pre>
```

```
_____ End of Script _____
```

277

- 278 -

Chapter 7: Using the Openxlsx R Package

Table 7.2 : Selected Rows from the Contingency Table in the IrrDataWorksheet

> irrdata.d	> irrdata.df												
# A tibble: 3 x 11													
Categories	s C1	C2	C3	C4	C5	C6	C7	C8	C9	C10			
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
1 C1	0	6	12	7	14	19	9	0	1	1			
2 C4	0	17	16	482	12	15	14	5	1	2			
3 C6	11	4	19	7	1	11	17	17	1	7			

 Table 7.3 : Contingency Table from the IrrData Worksheet

	data.df									
# A t	ibble: 10 x	11								
Cat	egories C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
<c< td=""><td>hr> <dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td></c<>	hr> <dbl></dbl>	<dbl></dbl>								
1 C1	0	6	12	7	14	19	9	0	1	1
2 C2	20	188	12	11	8	8	7	5	2	4
3 C3	19	14	80	15	7	8	7	8	4	3
4 C4	0	17	16	482	12	15	14	5	1	2
5 C5	19	18	6	4	620	17	0	9	10	6
6 C6	11	4	19	7	1	11	17	17	1	7
7 C7	7	9	6	7	16	8	472	13	8	5
8 C8	9	7	0	6	13	2	2	9	10	6
9 C9	1	6	1	9	10	11	5	18	120	23
10 C1	0 0	3	9	11	2	10	18	5	14	622

7.3 Writing an R Object to Excel

After learning how to read Excel data into R, you will now learn to write an R object to Excel. Note that the primary goal for connecting R and Excel is to use the powerful R functions that are effective for performing complex analyses, and to write the analysis results back to Excel. For example cleaning and reorganizing a data worksheet with tens of thousands rows will be done

- 279 -

more effectively with R.

Here are 3 situations you may encounter in practice:

- Writing an R Object to an Excel Worksheet: The writeData() function takes an R object (vector, matrix, or data frame) and write it to a worksheet starting from a specific cell defined by a row and a column number. In section 7.3.1, you will see with a concrete example how this function should be used. Moreover, if you need to create several Excel worksheets, then you could enhance the readability of your workbook by changing the color of each worksheet tab as discussed in section 7.3.2.
- Writing an R Data Frame to a Worksheet as an Excel Table: The Excel table is a special range of cells that is set up to make managing and analyzing a group of related data easier. You can write an R data frame to Excel and format it as an Excel table using the writeDataTable() function. The use of this function is illustrated in section 7.3.3.
- Writing a Data Frame or a List to a New Excel Workbook to be Created. This task is performed with the write.xlsx() function. This function is known to be offered by R packages other than openxlsx, which may create a conflict. If in doubt, then call the write.xlsx() functions as openxlsx::write.xlsx(), specifying the package it originates from. A concrete example in section 7.3.3 will show you how to use this function.

7.3.1 Writing an R Object to an Excel Worksheet

Let us consider the chap7data.xlsx workbook once again². The objective is to read the "Quantitative Ratings" table of the IrrData worksheet (c.f. Figure 7.3) and to create by its side a summary table containing the following information:

²You may download it with the link https://bit.ly/3CBdVqm

- 280 -

Chapter 7: Using the Openxlsx R Package

- The mean value of each of the variables J1, J2, J3, and J4 calculated at the Group-Target level.
- The standard deviation of all Group-Target means, calculated at the Group level, and separately for each of the variables J1, J2, J3, and J4.
- The title "Mean Ratings by Group and Target, and Standard Deviations by Group" is added at the top of the summary table.

For example, if Group="A" and Target="1", the summary table shows J1=5.5, which is the mean value (6+6.5+4)/3. Moreover, for Group="A", gsd.J1=0.471, representing the standard deviation of {5.5, 8}, the 2 mean values associated with group "A". Script 7.3 shows you the commands you need to perform this task, and produce an output depicted in Figure 7.4.

Script 7.3. R Script that illustrates the writeData() and saveWorkbook() functions. You may download it with the link: https://bit.ly/3wytXx6

```
01
    library(tidyverse)
02
    library(openxlsx)
03
    wb.df1 <- loadWorkbook(file="./data/chap7data.xlsx")</pre>
    names(wb.df1)
04
    quant.df <- read.xlsx(xlsxFile=wb.df1, sheet = "IrrData",</pre>
05
         rows = c(2:17), cols = 19:24)
06
07
    summary.df <- as_tibble(quant.df) %>%
        group_by(Group,Target) %>%
80
09
        summarise(across(c(J1,J2,J3,J4),mean)) %>%
        mutate(across(c(J1,J2,J3,J4),sd,.names="gsd..col")) %>%
10
11
       ungroup() %>%
12
       mutate(across(!c(Group,Target),round,3))
13
    #- Write R object to an Excel Worksheet
14
    writeData(wb = wb.df1,sheet = "IrrData",
15
16
         x = "Mean Ratings by Group and Target,",
         startCol = 26, startRow = 1)
17
```

Get the entire ebook for \$9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

7.3. Writing an R Object to Excel

18	<pre>writeData(wb = wb.df1, sheet = "IrrData",</pre>
19	x = "and Standard Deviations by Group",
20	<pre>startCol = 26, startRow = 2)</pre>
21	<pre>writeData(wb = wb.df1, sheet = "IrrData", x=summary.df,</pre>
22	<pre>startCol = 26, startRow = 4, rowNames = FALSE)</pre>
23	<pre>saveWorkbook(wb = wb.df1, file = "./data/chap70utput1.xlsx",</pre>
24	overwrite = TRUE)

```
End of Script _
```

I am going to review this script file and make a few comments about what it does:

- Lines #01 and #02 load the 2 packages tidyverse (I always use it for data analysis) and openxlsx (needed to manipulate Excel workbooks).
- Line #03 creates an Excel workbook object named wb.df1 that R will use from now on to interact with the chap7data.xlsx workbook.
- Line #04 list all worksheets contained in the chap7data.xlsx workbook. This list is useful since you need these names to access specific datasets.
- Lines #05 and #06 use the read.xlsx() function of the openxlsx package to read a worksheet named IrrData³, and extract all values in the range of cells defined by rows 2 through 17 and columns 19 through 24, into the data frame quant.df.
- Lines #07 through #12 perform many tasks. In line #07, the as_tibble() function converts the standard quant.df data frame to a tidyverse-friendly tibble. The group_by() function is used in line #08 to tell R that the subsequent analysis will be performed at the Group-Target level. In line #09, the mean value of each variable J1, J2, J3 and J4 is calculated at the Group-Target level. This produces a summary table for each Group-Target combination.

281

 $^{^3 \}rm Note that worksheet names in R are case sensitive. That is, <math display="inline">\tt IrrData$ is different from <code>irrData</code>.

- 282 -

Chapter 7: Using the Openxlsx R Package

Note that the summary() function takes the input data frame quant.df and creates a smaller summary dataset where each record represents a Group-Target level. However, this summary dataset will still be "grouped" by Group only. That is, the subsequent analysis on the summary file will be carried out at the Group level. If instead, you want it to be carried out at the row or record level, then you must "ungroup" the summary data file using the ungroup() function.

In line #10, I use the mutate() function to add 4 columns named gsd.J1, gsd.J2, gsd.J3 and gsd.J4 that contains the standard deviation of the J-variables evaluated at the Group level.

In line #11, the ungroup() function instructs R to perform subsequent analysis at the row level so that the mutate() function of line #12 can be used to round all numbers to 3 digits after the decimal points.

Without the use of the ungroup() function in line #11, the mutate() function of line #12 will not work.

Now is the time to export the results to Excel.

- In lines #15, #16, and #17, I use the writeData() function to write the title "Mean Ratings by Group and Target" to the IrrData worksheet starting from column #26 and row #1.
- In lines #18, #19, and #20, I use the writeData() function one more time to write the second part of the title "and Standard Deviations by Group", to the IrrData worksheet starting from column #26 and row #2.
- In lines #21, and #22, I use the writeData() function to write the summary.df data frame to the IrrData worksheet, starting from column #26 and row #4.
- In lines #23 and #24, I use the saveWorkbook() function to write the workbook object wb.df1 to a physical location on your hard drive as an actual Excel workbook named chap7Output1.xlsx.

- 283 -

By using the argument overwrite=TRUE, I opted to overwrite any existing Excel workbook with the same name chap70utput1.xlsx. You could also have specified the exact name of the input file chap7data.xlsx, in which case it would have been overwritten. The output file chap70utput1.xlsx, can be downloaded using the link https://bit.ly/3ASmQSZ.

If creating a single summary table such as that of Figure 7.4 is your primary objective, you would not need to connect R to Excel to obtain it. You can create it from within Excel without R. The key benefit of connecting R and Excel lies in the ability to perform multiple data manipulations involving grabbing pieces of data from various worksheets, different workbooks and possibly external non-Excel data sources, combining them and updating existing Excel workbooks with new data. The new enriched workbook(s) can be further analyzed more conveniently from within Excel. The current example shows you some of the possibilities that are available to you with the openxlsx package.

S	Т	U	V	W	Х							
	Quantititative Ratings											
Group	Target	J1	J2	J3	J4							
А	1	6	1	3	2							
А	1	6.5	3	3	4							
А	1	4	3	5.5	4							
В	5	10	5	6	9							
В	5	9	4.5	5	9							
В	5	9.5	4	6.6	8							
В	4	6	2	4	7							
В	4	7	1	3	6							
В	4	8	2.5	4	5							
Α	2	9	2	5	8							
Α	2	7	1	2	6							
А	2	8	2	2	7							
В	3	10	5	6	9							
В	3	7	4	6	5							
В	3	8	4	6	8							

Figure 7.3: Quantitative Ratings from 4 Judges

Chapter 7: Using the Openxlsx R Package

S	Т	U	v	W	х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Qu	antitita	tive	Rati	ngs			Mean F	Ratings I	oy Grou	ip and ⁻						
Group	Target	J1	J2	J3	J4		and Sta	indard [Deviatio	ons by (Group					
А	1	6	1	3	2											
А	1	6.5	3	3	4		Group	Target	J1	J2	J3	J4	gsd.J1	gsd.J2	gsd.J3	gsd.J4
А	1	4	3	5.5	4		Α	1	5.5	2.333	3.833	3.333	1.768	0.471	0.589	2.593
В	5	10	5	6	9		Α	2	8	1.667	3	7	1.768	0.471	0.589	2.593
В	5	9	4.5	5	9		В	3	8.333	4.333	6	7.333	1.251	1.494	1.31	1.333
В	5	9.5	4	6.6	8		В	4	7	1.833	3.667	6	1.251	1.494	1.31	1.333
В	4	6	2	4	7		В	5	9.5	4.5	5.867	8.667	1.251	1.494	1.31	1.333
В	4	7	1	3	6											
В	4	8	2.5	4	5											
А	2	9	2	5	8											
А	2	7	1	2	6											
А	2	8	2	2	7											
В	3	10	5	6	9											
В	3	7	4	6	5											
В	3	8	4	6	8											

Figure 7.4: Quantitative Ratings along with a Summary Table of Means by Group and Target, as well as Group Standard Deviations of Means

You may have noticed that the openxlsx package makes it more convenient to assign R objects to an Excel range of cells than the xlsx package, which requires that you first define cell objects.

7.3.2 Changing the Color of Worksheet Tabs

In this section, you will learn 2 things. First, you will see how you can use R to analyze a large number of variables in a data frame without having to list them all explicitly. Second, you will learn how with R, you would create multiple Excel worksheets in the same workbook, while assigning a different color to each worksheet tab to make them stand out.

Let us consider the Excel workbook chap7data.xlsx used in previous examples, and which you can download with the link https://bit.ly/3CBdVqm.

- 285 -

The focus in this section, will be on a specific worksheet named IccData. It contains the largest dataset of the chap7data.xlsx workbook with 2160 records and 26 variables, 5 of which are categorical and the remaining 21 are quantitative.

Categorical Variables

You will choose the level of aggregation of your analysis along dimensions that are defined by the following 5 categorical variables: VSOFT, VID_Subj, VMOD, vSoftMod and RestStress_Rater.

• Quantitative Variables

The 21 quantitative variables on which the calculations will be performed, are given by:

vglobal, vlad, vlcx, vrca, vseg01, vseg02, vseg03, vseg04, vseg05, vseg06, vseg07, vseg08, vseg09, vseg10, vseg11, vseg12, vseg13, vseg14, vseg15, vseg16, vseg17.

To conduct my analysis, I need to read the Excel worksheet IccData included in the workbook chap7data.xlsx, and to create in that same workbook, 2 worksheets named summaryStats1 and summaryStats2. The summaryStats1 worksheet, whose tab will be colored in red, should contain the summation of each of the variables vglobal, vlad, vlcx, and vrca, calculated by VSOFT level. The columns of this table will be named as tot_vglobal, tot_vlad, tot_vlcx, and tot_vrca (see Figure 7.5). The summaryStats2 worksheet, whose tab will be colored in blue, should contain the summation of each of the 17 variables vseg01-vseg17, calculated by VSOFT. The columns of this table will be named as tot_vseg01-tot_vseg17 (see Figure 7.6).

Script 7.4 is a 28-line script file that I wrote to implement this analysis. In lines #01-#16, the content of the IccData worksheet is read into a data frame named icc.df, and the 2 summary data frames of interest vsoft1 and vsoft2 are created. Note that vsoft1 and vsoft2 are the 2 data frames that are later written to the summaryStats1 and summaryStats2 worksheets respectively.

- 286 -

Chapter 7: Using the Openxlsx R Package

Script 7.4. R Script for creating the summaryStats1 and summaryStats2 worksheets of Figures 7.5 and 7.6. Download this script with the link: https://bit.ly/ 3Tz9SRs

```
library(tidyverse)
01
02
   library(openxlsx)
03 wb.df1 <- loadWorkbook(file="./data/chap7data.xlsx")
04
   names(wb.df1)
   icc.df <- read.xlsx(xlsxFile=wb.df1, sheet = "IccData")</pre>
05
06
   icc.df <- as_tibble(icc.df)</pre>
   vsoft1 <- icc.df %>%
07
80
        group_by(VSOFT) %>%
09
        summarize(across(c(vglobal,vlad,vlcx),sum,
              .names="tot_.col"))
10
   vsoft2 <- icc.df %>%
11
        group_by(VSOFT) %>%
12
13
        summarize(across(contains("vseg"),sum,
14
             .names="tot_.col"))
   print.data.frame(vsoft1)
15
   print.data.frame(vsoft2)
16
17
    addWorksheet(wb=wb.df1,sheetName="summaryStats1",
18
        tabColour = "red")
19
    addWorksheet(wb=wb.df1,sheetName="summaryStats2",
20
21
        tabColour = "blue")
    #- Write R object to an Excel Worksheet
22
   writeData(wb=wb.df1, sheet="summaryStats1", x=vsoft1,
23
24
        startCol = 1, startRow = 2, rowNames = FALSE)
   writeData(wb=wb.df1, sheet="summaryStats2", x=vsoft2,
25
        startCol = 1, startRow = 2, rowNames = FALSE)
26
27
    saveWorkbook(wb.df1, "./data/summaryFile.xlsx",
        overwrite = TRUE)
28
```

___ End of Script _

Look at lines #10 and #14 where the column names are created by specifying .names="tot_.col" as argument of the summarize() function. The original column name is represented by col, whereas the "tot_ is the prefix that is added to the column name.

	А	В	С	D	Е	F	(
1											
2	VSOFT	tot_vglobal	tot_vlad	tot_vlcx							
3	1	272.569597	265.769453	266.38632							
4	2	274.621596	270.17	270.71							
5	3	547.991511	555.030293	553.32374							
6	4	531.318	529.508	501.773							
7	5	289.177	288.599	277.564							
8	6	929.621783	921.835471	905.323094							
9	7	258.234971	261.302686	249.06978							
10	8	285.233	283.854	272.883							
11	9	245.992056	206.240652	205.885995							
12	11	497.136266	494.035067	492.113282							
•											
Read	dy 🗊 🛣	Accessibility: Inves	stigate								

Figure 7.5: Totals by VSOFT of the 3 variables vglobal, vlad and vlcx.

	А	В	С	D	E	F	G				
1		_		_	_						
2	VSOFT	tot_vseg01	tot_vseg02	tot_vseg03	tot_vseg04	tot_vseg05	tot_vseg06				
3	1	247.871825	271.715726	320.244532	287.355567	258.276853	247.460413				
4	2	287.895577	310.452052	306.176068	290.850844	267.558457	282.207293				
5	3	525.474849	518.354174	500.440563	514.616549	512.925048	498.42716				
6	4	491.017	580.854	606.073	529.778	487.519	481.382				
7	5	262.517	270.007	274.595	277.58	257.346	253.902				
8	6	773.951022	787.338442	806.854233	885.500552	817.014523	774.536472				
9	7	264.4103	263.9239	240.0571	256.2554	238.2825	224.5542				
10	8	238.473	246.36	257.831	272.328	257.125	245.908				
11	9	217.384887	215.384768	215.340497	211.940933	205.31458	212.024111				
12	11	502.186977	478.350359	461.74652	485.449629	447.691113	478.211591				
•											
Rea	dy 💽	🛠 Accessibilit	ty: Investigate								

Figure 7.6: Totals by VSOFT of all variables that start with vseg.

Lines #18-#21 are used to create the 2 worksheets summaryStats1, and summaryStats2 with colored tabs, in the workbook object wb.df1 created in line #03. Note that so far, all the work is being done on the virtual workbook

- 287