APPENDIX A

Operators in R

OBJECTIVE

This appendix provides a description of selected R built-in functions, as well as a discussion about the use of relational operators. The built-in functions covered, include statistical functions in Table A.1, text functions in Table A.2, and mathematical and trigonometry functions in Table A.3. I added a short list of useful general reference functions in Table A.4. These are functions that I have often used for manipulating vectors in R. The relational operators are covered in section A.2. You will learn the rules that regulate the comparison between 2 vectors.

Contents

A.1	Selected Built-In Functions in R	28
A.2	Relational Operators	54

- 428 - Appendix A: Built-In Functions & Relational Operators in R

A.1 Selected Built-In Functions in R

max (x)	This function computes the largest of all		
	elements pertaining to object x.		
$\min(\mathbf{x})$	This function computes the smallest of all		
	elements pertaining to object x.		
<pre>mean(x, trim=0,</pre>	This function computes the mean of object x. In		
na.rm=FALSE)	Excel you will use various versions of the		
	AVERAGE() function.		
median(x)	This function computes the median of object x,		
	assumed to contain several numbers.		
quantile(x, probs)	This function computes one quantile or several		
	quantiles of the numeric vector x , based on the		
	vector of probabilities $probs$ (Figure A.1 shows		
	how this function is used)		
sd(x)	This function computes the standard deviation		
	of object x elements.		
sum(x)	This function computes the sum of all elements		
	pertaining to object x.		
var(x)	This function computes the variance of object x		
	elements.		
<pre>dnorm(x,mean=0,sd=1)</pre>	Evaluates the Normal density function at all		
or $dnorm(x,m=0,s=1)$	elements of vector x . By default meam=0 and		
	sd=1.		

 Table A.1 : Statistical Functions

Get the entire ebook for \$9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

A.1. Selected Built-In Functions in R

- 429 -

pnorm (q)	Evaluates the cumulative distribution function
	(CDF) of the Normal distribution at the
	probability value(s) q, where q is vector of
	probabilities (e.g. pnorm(c(1.96,2.3)) would
	yield 0.975 0.989).
qnorm (p)	Computes the $100p^{th}$ quantile of the Normal
	distribution, where p is a vector of probabilities.
rnorm(n, m=0,sd=1)	Creates a random sample of n normal variate
	with mean m and standard deviation sd.
<pre>dunif(x, min=0,</pre>	Evaluates the uniform density function between
max=1)	min and max at all points of x.
<pre>punif(x, min=0,</pre>	Evaluates the uniform cumulative probability
max=1)	distribution between min and max at all points
	of vector x.
<pre>qunif(p, min=0,</pre>	Evaluates quantiles of uniform distribution
max=1)	between min and max at all values of the
	probability vector p.
<pre>runif(n, min=0,</pre>	Generates n random uniform variates between
max=1)	min and max.
<pre>sample(x, size,</pre>	Takes a random sample of specified size from the
replace=FALSE)	elements of x with replacement if replace=TRUE
	or without replacement if replace=FALSE
	(default value).

- 430 - Appendix A: Built-In Functions & Relational Operators in R

<pre>substr(x,start=n1,stop=n2)</pre>	Useful function for extracting or replacing		
	substrings in a character vector x . Let		
	x<-"KILEM GWET". Then		
	<pre>substr(x,7,10) yields "GWET". The</pre>		
	equivalent Excel function would be $MID.$		
<pre>strsplit(x, split)</pre>	Split the elements of character vector x at		
	split. This function is useful if you want		
	to create a vector of characters out of a		
	string.		
<pre>paste(v1,v2, sep=" ")</pre>	Concatenate 2 vectors v1 and v2		
	elementwise, after converting them to		
	characters. Note that sep defines the		
	character that separates 2 concatenated		
	elements. This is the R equivalent of the		
	Excel function CONCATENATE().		
toupper(x)	Function would convert text in x to		
	uppercase, equivalent to the Excel		
	function UPPER.		
tolower(x)	Function would convert text in x to		
	lowercase, equivalent to the Excel		
	function LOWER.		

Table A.2 : List of Text Functions

A.1. Selected Built-In Functions in R

- 431 -

R Function	Excel Function	Description		
abs(x)	ABS(x)	Returns the absolute value of object x. In		
		R, x may be a vector or a matrix, and		
		could be a cell or range of cells in Excel.		
ceiling (x)	CEILING (x,1)	Returns the smallest integer that equals or		
		exceeds x.		
cos(x),	COS (x),	Returns the cosine and the hyperbolic		
cosh(x)	COSH (x)	cosine of x.		
exp (x)	EXP (x)	Returns e raised to the power of number.		
		The constant ${\tt e}$ equals 2.71828182845904,		
		the base of the natural logarithm.		
floor(x)	FLOOR (x,1)	Returns the largest integer that is equal or		
		smaller than x.		
log(x)	LN(x)	Returns the natural logarithm of a x,		
		which is based on the constant		
		e = 2.71828182845904.		
log10 (x)	LOG10 (x)	Returns the base-10 logarithm of a x.		
round(x,	ROUND(x,n)	Rounds x to n digits after the decimal		
digits=n)		place. Parameter n is optional in R and		
		mandatory in Excel.		
sin(x),	SIN(x),	Returns the sine and the hyperbolic sine of		
sinh(x)	SINH(x)	х.		
sqrt(x)	SQRT(x)	Returns the square root of object x. In R,		
		${\bf x}$ may be a vector or a matrix, and could		
		be a cell or range of cells in Excel.		
tan(x),	TAN(x),	Returns the tangent and the hyperbolic		
tanh(x)	TANH(x)	tangent of x.		
trunc(x)	TRUNC (x,1)	Truncates the value of x towards 0.		

Table A.3	:	List	of	Math	and	Trigonometr	y	Functions
-----------	---	------	----	------	-----	-------------	---	-----------

Get the entire ebook for \$9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

- 432 - Appendix A: Built-In Functions & Relational Operators in R

R Function	Description
ncol (x)	Number of columns of a data frame or a
	matrix
nrow(x)	Number of rows of a data frame or a
	matrix
<pre>seq(from n, to m, by k)</pre>	Generates a sequence of numbers from n
	to m with increment of k.
<pre>rep(x,times=t,each=e)</pre>	This function replicates the values in x, t
	times and each element of x is repeated e
	times.
<pre>sort(x,decreasing=FALSE).</pre>	Sorts all elements of vector x in ascending
The decreasing parameter is	order by default. If you want to sort x is
optional.	descending order, then you must specify
	decreasing=TRUE.

Table A.4 :]	Reference	Function	\mathbf{s}
-------------	---	-----------	----------	--------------

A.1. Selected Built-In Functions in R

R RStudio	
<u>File Edit Code View Plots Session</u>	<u>B</u> uild <u>D</u> ebug <u>P</u> rofile <u>T</u> ools <u>H</u> elp
🕑 🗸 🚳 🚰 🖌 🔒 🔚 📥 🛛 🥕 Go to file/fur	nction Addins •
<pre> Untitled1* ×</pre>	Run Source → Run Source → Source Ctrl+Shift+S Source with Echo Ctrl+Shift+Enter Source as Local Job. Source the contents
1:1 (Top Level) ≑ Console Terminal × Jobs ×	of the active document (with echo)
<pre>R 4.1.1 · ~/ ~</pre> > source ("~/.active-rstudio-documen > x <- 3:67 > print(x) [1] 3 4 5 6 7 8 9 10 11 12 [20] 22 23 24 25 26 27 28 29 30 31 [39] 41 42 43 44 45 46 47 48 49 50 [58] 60 61 62 63 64 65 66 67 > quantile(x,c(0.25,0.67,0.75)) 25% 67% 75% 19.00 45.88 51.00 >	t", echo=TRUE) 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 51 52 53 54 55 56 57 58 59

Figure A.1: Computing Quantiles of a Numeric Vector

433

-

– 434 – Appendix A: Built-In Functions & Relational Operators in R

A.2 Relational Operators

Table A.5 shows the relational operators supported by R language. You can compare 2 vectors \mathbf{a} and \mathbf{b} (e.g. ($\mathbf{a} > \mathbf{b}$)). This operation is possible only if the number of elements of the longer vector is a multiple of the number of elements of the shorter vector. In this case, each element of the shorter vector will be compared with the *Corresponding* element in the longer vector.

Consider the commands a < -c(5,2) and b < -c(1,4,3,6). The longer vector **b** has 4 elements whereas the shorter one **a** has only 2. Nevertheless, the binary operator > used in the command (a > b) can still be applied on vectors of different lengths. This operation is done by *recycling* the elements of the shorter vector **a**. The recycling process consists of extending the shorter vector until it matches the length of the longer one. The elements of the short vector are repeated sequentially, starting by the first one. R will evaluate (a < b) according to the following table:

a ^a	5	2	5	2
b	1	4	3	6
(a>b)	TRUE	FALSE	TRUE	FALSE

^{*a*}Extended version of vector **a**.

It follows from this table that 5 (the first element of **a**) is associated the 1 and 3 (the first and third element of **b**), whereas 2 (the second element of **a**) is associated with 4 and 6, the second and fourth element of **b**). The command (**a>b**) produced the boolean vector (TRUE, FALSE, TRUE, FALSE).

Note that if the number of b-elements is not a multiple of the number of a-elements, some a-elements will be recycled more than others, which will generate a warning message. But recycling will still take place. Recycling is commonly-used in R for binary element-wise operators on vectors.

A.2. Relational Operators

Operator	Description	Example
>	Greater Than: The command a>b checks if each element of a is greater than the <i>correspond-</i> <i>ing</i> element of b or not.	<pre>print(c(3.5,7.1)>4.3) will produce the following vec- tor:[1] FALSE TRUE</pre>
<	Smaller Than: The command a ≤ b checks if each element of a is smaller than the corresponding element of b or not.	<pre>print(c(3.5,7.1)<4.3) will produce the following vec- tor:[1] TRUE FALSE</pre>
	Equal To: The command a==b checks if each element of a is equal to the corresponding element of b or not.	<pre>a <- c(3.5,7.1,4.3) b <- c(1.5,7.0,4.3) print(a==b) produces vector: [1] FALSE FALSE TRUE</pre>
<=	Smaller or Equal To: The command a<=b checks if each element of a is smaller than or equal to the corresponding element of b or not.	<pre>a <- c(3.5,7.1,4.3) b <- c(1.5,7.0,4.3) print(a<=b) produces vector: [1] FALSE FALSE TRUE</pre>
>=	Greater or Equal To: The command a>=b checks if each element of a is greater than or equal to the corresponding element of b or not.	<pre>a <- c(3.5,7.1,4.3) b <- c(1.5,7.0,4.3) print(a>=b) produces vector: [1] TRUE TRUE TRUE</pre>
! =	Not Equal To: The command a!=b checks if each element of a is different from the <i>corre-</i> <i>sponding</i> element of b or not.	<pre>a <- c(3.5,7.1,4.3) b <- c(1.5,7.0,4.3) print(a!=b) produces vector: [1] TRUE TRUE FALSE</pre>

Table A.5 : Relational operators for comparing 2 vectors a and b

Get the entire ebook for \$9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts