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Preface

Principal component analysis (PCA) will appeal to you if you have collected
a large number of measurements on each of many subjects and find it difficult
to extract useful information out of your dataset. Measurements are often as-
sociated with correlated variables, making it difficult to evaluate the impact of
individual variables on subjects. PCA is a statistical technique that transforms
the original correlated variables into a new set of variables called the principal
components, which have 2 interesting properties: (i) they are uncorrelated, and
(ii) they are ordered in such a way that the first few of them can explain most
of the variation contained in the original dataset.

You can see some key advantages of using principal components as surro-
gates for the original variables:

• Since the first few principal components can explain most of the varia-
tion in the original dataset, your analysis can be based on one or two
principal components instead of being based on 20 or 30 correlated vari-
ables. Therefore, the primary objective of the principal components is
dimensionality reduction. It allows for a clearer view of many aspects of
a complex dataset built with inter-related variables. The 2 dominant prin-
cipal components can give you an instructive two-dimensional snapshot
of a complex dataset.

• Principal components are uncorrelated. Therefore, each can be inter-
preted independently from the others leading to a more stable statistical
analysis.

The literature on principal component analysis (PCA) is abundant. This
statistical technique is believed to have been introduced by Pearson (1901) be-
fore being rediscovered by Hotelling (1933). As a result, the PCA was previously
referred to as the Hotelling transformation. While many computer scientists
only discover this technique now in the era of machine learning, it is actually
a very old statistical technique that has been used by statisticians for more
than a century. Why did I then decide to add another book to this extensive
literature?
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While many introductory books on PCA - Dunteman (1989) for example -
are good at providing a high-level overview of the concepts and their possible
applications, they often do not provide a sufficiently detailed account of how
principal components are calculated. The more advanced books such as that
of Jolliffe (2002), tend to cover too much ground and to overemphasize the
mathematical aspects of the methods. Every technical detail appears to be
important and limited effort is devoted to showing what makes this technique
work. Moreover, the computational aspects of principal components, which
often involve advanced numerical methods are often neglected. I decided to
write this book to provide a good balance between the need to describe the
computational procedures and that of presenting an adequate mathematical
treatment of the methods. The coverage of the different methods for computing
principal components is not comprehensive. Instead, I have focused on some of
the most widely-used methods.

Even though using an existing PCA algorithm is trivial, the mathematics
of principal components can be involved. It is likely the primary cause of them
being omitted in many publications. The more you want to understand what
is taking place behind the scene, the deeper you need to dig. My goal in this
book, is to make the study of principal components as painless as possible.

Mathematical concepts such as the eigenvalue or the eigenvector, previ-
ously taught in linear algebra courses only, must now be understood by most
researchers and analysts given their growing importance in new fields. The
eigenvalues and eigenvectors are widely used today in the field of artificial in-
telligence in addition to having found numerous applications in the past few
decades in the social sciences. Understanding what they are and how to com-
pute them is essential for understanding how large bodies of data are analyzed
today.

After you complete the reading this book, I expect you to have an in-
depth understanding of what principal components are, how to compute them,
and what makes them work. For those of you who use Microsoft Excel, an
Excel template named pca.xlsm can be downloaded for free at the address
https://agreestat.com/books/pca/pca.xlsm.

About the Author

I received my PhD in Mathematics from Carleton University’s School of Math-
ematics and Statistics, Ottawa (Canada) in 1997. My specialization was the
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design and analysis of statistical surveys. In the past few years however, I de-
voted considerable time and energy to the field of inter-rater reliability analysis,
in which I published several papers and books (for some of my works in this
field see https://www.researchgate.net/profile/Kilem_Gwet). It is after
successfully using principal components to analyze multivariate inter-rater re-
liability data that I first considered writing this book. I wanted a book that
shows step by step how principal components are calculated, what they repre-
sent, how they must be used and what their limitations are. These are some of
the reasons why I wrote this book, which I hope you will find useful.

If you have comments or questions, please contact me at gwet@agreestat.com.
I will respond to your inquiry as early as I possibly can.

Kilem Li Gwet, Ph.D.

https://www.researchgate.net/profile/Kilem_Gwet
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