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Computing Principal
Components

OBJECTIVE
The purpose of this chapter is to provide a technical review of the mathematics of
principal components. The objective is not to provide a comprehensive review of all
techniques that have been proposed for computing principal components. It is rather
to present a detailed account of one possible approach that has been successfully
implemented in practice. You will learn all the computation steps from raw data
leading up to the principal components.
I will also discuss the preliminary work that must be done on your data before
you start computing the principal components. The two issues discussed will be
the centering and the standardization. While chapter 2 focuses on computational
methods, chapter 3 is devoted to the interpretation and applications of principal
components.
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- 36 - Chapter 2: Computing Principal Components

“Don’t say the old lady screamed. Bring her on and let her scream.”
Mark Twain

2.1 Introduction

Principal Component Analysis (PCA) is recommended if your dataset
contains several correlated variables that were measured on each of many sub-
jects and you are having difficulties extracting useful information from it. One
such dataset is shown in Table 2.1. For example, credit card companies or credit
bureaus often collect lots of data on individuals (e.g. annual income, length of
credit history, current loans, FICO score, ...) considered to be key determi-
nants of credit card default. An economist may gather country data (e.g. gross
domestic product, male and female educational attainment, inflation rate, or
female fertility rate) to study the determinants of economic growth. A key
problem researchers often face when using multidimensional data is that many
variables are often correlated, making it difficult to understand which variable
has a meaningful impact on the characteristic being investigated.

When dealing with an initial large set of correlated variables, the solution
is often to narrow it down to a smaller set of uncorrelated derived variables
that retain most of the information contained in the original variables. Even
if the interpretation of the derived variables is not straightforward, you can
always study their correlation with the original variables to understand their
structure. The original variable that has the highest correlation with a derived
variable will contribute to its definition in a meaningful way. These correlations
between original and derived variables are referred to in the PCA literature as
the principal component loadings.

It is essential at this stage to realize that the covariance matrix1 or the
correlation matrix2 is used to quantify the amount of information contained in
a dataset. The covariance matrix contains the variance of each variable on the
diagonal whereas its off-diagonal elements are the covariances of the different
pairs of variables. Imagine a dataset where each variable has a zero variance.
It means each variable takes a unique value for all subjects and does not carry
any useful information about these subjects that can be exploited in any in-

1For p variables, this p × p matrix is created by calculating the covariance between all
pairs of variables.

2The correlation matrix is the matrix of all pairwise correlation coefficients. All diagonal
elements of this matrix equal 1.
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2.1. Introduction - 37 -

vestigation. A zero variance also leads to a 0 covariance. You can see why the
covariance matrix plays a pivotal in PCA. I will explain in section 2.3.2 why I al-
ways prefer the correlation matrix over the covariance matrix even though both
matrices produce similar results in most situations. As an example, consider
Table 2.2 showing the correlation matrix associated with the original variables
of Table 2.1.

Table 2.1: Measurements of 7 attributes taken on 12 subjects.

Subject V1 V2 V3 V4 V5 V6 V7

1 6.147 7.767 7.830 7.024 7.284 7.393 6.267
2 7.115 6.620 7.479 7.386 6.926 7.485 6.561
3 7.367 7.779 7.150 8.425 7.816 8.612 7.872
4 7.425 8.454 10.160 8.424 8.902 8.671 8.621
5 7.510 8.292 8.895 10.031 8.459 9.972 8.761
6 7.575 7.913 7.958 7.329 7.339 8.582 8.356
7 7.644 8.730 8.846 9.024 8.896 9.276 9.400
8 7.763 8.520 8.881 8.059 6.770 9.191 7.718
9 7.808 7.957 7.939 7.823 7.598 7.637 7.892
10 7.917 8.480 7.840 7.513 8.539 8.413 9.133
11 7.953 8.737 7.671 9.320 8.340 8.576 8.463
12 8.022 8.384 8.380 6.891 7.536 8.199 9.183

You can look at the original variables of Table 2.1 as coordinates of your
data points in the standard coordinate system where each of the 7 basis vectors
points in a different orthogonal direction. The 7 × 7 identity matrix describes
this standard coordinate system, and each column of this matrix is a basis
vector. Calculating the principal components amounts to finding an alterna-
tive coordinate system, represented by a special orthogonal matrix VVV whose
columns are vectors called the Principal Components and which represent the
7 basis vectors of a new coordinate system. What is peculiar about the new
coordinate system is the direction of each basis vector. The first principal com-
ponent points in a special direction along which the data projections have the
largest variance possible. The second principal component points in the direc-
tion of the second largest variance, and so on. This is how you can decide to
retain only the first 2 principal components for example if their cumulative
percent of the total variance explained is deemed sufficiently large. Table 2.3

contains the 7 principal components associated with the correlation matrix of
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Table 2.2. This is the orthogonal matrix VVV that I mentioned in the previous
paragraph, and which forms the new coordinate system within which the data
will be analyzed. Each of the 7 principal components is an eigenvector of the
correlation matrix of Table 2.2 with the associated eigenvalues given in Table
2.4. You can verify3 that multiplying matrix ΣΣΣ by a column of VVV will yield a
vector that is a multiple of that same column scaled by a factor determined by
the corresponding eigenvalue. I will discuss in section 2.4 how these principal
components and associated eigenvalues are calculated.

Table 2.2: Correlation matrix ΣΣΣ of the 7 variables of Table 2.1

Attributes V1 V2 V3 V4 V5 V6 V7

V1 1 0.537 0.139 0.246 0.276 0.411 0.771
V2 0.537 1 0.503 0.437 0.598 0.606 0.752
V3 0.139 0.503 1 0.308 0.438 0.505 0.408
V4 0.246 0.437 0.308 1 0.607 0.762 0.382
V5 0.276 0.598 0.438 0.607 1 0.474 0.701
V6 0.411 0.606 0.505 0.762 0.474 1 0.626
V7 0.771 0.752 0.408 0.382 0.701 0.626 1

Table 2.3: The principal components represented by the columns of matrix VVV

PC1 PC2 PC3 PC4 PC5 PC6 PC7

0.316 0.663 0.164 0.240 0.325 0.414 0.314
0.420 0.137 -0.221 -0.031 -0.842 0.214 0.017
0.300 -0.346 -0.733 0.296 0.331 0.227 -0.059
0.349 -0.447 0.566 0.038 0.058 0.451 -0.386
0.387 -0.182 -0.023 -0.765 0.197 -0.038 0.437
0.412 -0.235 0.247 0.490 -0.053 -0.569 0.384
0.439 0.365 -0.067 -0.161 0.174 -0.450 -0.641

Table 2.4 shows the 7 eigenvalues λ1, · · · , λ7 associated with the eigenvectors
of Table 2.3 along with the percent of total variance each explains individually
and cumulatively. You can see that the first 2 principal components explain

3Tables 2.1, 2.2, 2.3, and 2.5 are included in the following downloadable text file:
https://agreestat.com/books/pca/datasets/table2x1pca.csv
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73.4% of the total variance. You could then decide to narrow your analysis
from the initial 7 dimensions down to the 2 dimensions represented by the first
2 principal components PC1 and PC2. Consequently, you will need to translate
your initial data points of Table 2.1 into the new coordinate system represented
by the first 2 principal components. Table 2.5 contains the new coordinates of
the initial data points in the coordinate system represented by all 7 principal
components.

Table 2.4: The correlation matrix eigenvalues and their contribution to total
variance

λ1 λ2 λ3 λ4 λ5 λ6 λ7

Eigenvalues (λ) 4.062 1.075 0.764 0.581 0.307 0.195 0.016
% Variancea 0.580 0.154 0.109 0.083 0.044 0.028 0.002

% Var. Cum.b 0.580 0.734 0.843 0.926 0.970 0.998 1

aPercentage of total variance explained individually
bPercentage of total variance explained cumulatively

Table 2.5: Coordinatesa of Table 2.1 data points in the new coordinate system
of principal components

Subject PCS1 PCS2 PCS3 PCS4 PCS5 PCS6 PCS7

1 -3.414 -1.431 -0.767 -0.619 -1.002 -0.139 -0.058
2 -3.633 -0.285 0.519 0.166 1.091 0.119 0.033
3 -0.742 -0.106 1.309 -0.261 -0.087 -0.347 0.075
4 1.802 -1.142 -1.664 -0.394 0.607 0.333 0.101
5 2.389 -1.518 0.907 0.534 0.300 -0.273 -0.095
6 -0.667 0.666 -0.057 0.471 0.074 -0.589 -0.026
7 2.541 -0.415 -0.039 -0.485 -0.044 -0.279 -0.104
8 0.230 0.047 -0.361 1.971 -0.566 0.244 0.139
9 -0.900 0.817 0.023 -0.209 0.234 0.745 -0.097

10 0.854 1.254 -0.093 -0.907 -0.087 -0.340 0.255
11 1.333 0.353 1.129 -0.473 -0.574 0.767 -0.019
12 0.208 1.760 -0.906 0.206 0.054 -0.241 -0.205

aThese coordinates are referred to as the Principal Component Scores (PCS). PCS1 refers
to the scores associated with the first principal component.
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You may then retain only the first 2 series of principal component scores for
your data analysis. This is how your problem is changed from 7 dimensions
down to only 2 dimensions. I will show in section 2.2 how these factors are
calculated.

Table 2.5 columns are often referred to in the literature as the PC
factors. Not to be confused with the principal components. The
principal components are the basis vectors defining a new coordi-
nate system within which your data points will be analyzed. The
coordinates of your data points within that new system are the PC
factors or PC scores.

You will always need PC scores to map your data points in the new
coordinate system of principal components. We will see later that
multiplying the correlation matrix of your original data by matrix
of principal components always yields the PC scores.

Figure 2.1 depicts the projection of your data points on the two-dimensional
space defined by the first 2 principal components. This allows you to have a
graphical representation of your data reflecting over 73% of total variance. With
this graph, you can perform some visual exploratory analysis and be able to
detect possible outliers. This would have been impossible if you had to deal
with all 7 dimensions.
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Figure 2.1: Scatterplot of Table 2.1 observations with respect to the first 2
principal components
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