APPENDIX B

Matrices, Vectors and Calculus

Contents

B.1	Introduction					112
B.2	Rules of Matrix Operations					112
	B.2.1 Scalar product of 2 vectors					112
	B.2.2 Multiplication of 2 matrices					113
B.3	Scalar Function Derivative with Respect to a Vector					114
B.4	Scalar Function Derivative with Respect to a Matrix	•				115
B.5	Vector Function Derivative with Respect to a Scalar					115
B.6	Vector Function Derivative with Respect to a Vector	•				116

- 112 -

Chapter B: Matrices, Vectors, Calculus

B.1 Introduction

In this appendix B, I want to summarize key results on matrix operations and calculus that are needed in principal component analysis. Readers wanting to understand how the principal components are derived should be comfortable with some basic rules that govern matrix operations and matrix calculus. Moreover, results on the differentiation of scalar functions with respect to a vector or a matrix will be presented. Also presented in this appendix are results and properties related to the differentiation of vector functions with respect to a scalar or a vector.

B.2 Rules of Matrix Operations

In the linear algebra literature, a vector is typically considered to be a column vector. That is, a vector \boldsymbol{x} with 3 elements x_1 , x_2 and x_3 for example is defined as,

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot$$

You can also represent this vector in a more compact format as $\boldsymbol{x} = (x_1, x_2, x_3)^{\top}$ or $\boldsymbol{x} = (x_1 \quad x_2 \quad x_3)^{\top}$, where the symbol \top indicates that the entity it applies to must be transposed vertically.

B.2.1 Scalar product of 2 vectors

Consider 2 vectors of the same size \boldsymbol{x} and \boldsymbol{y} given by,

$$oldsymbol{x} = egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} ext{ and } oldsymbol{y} = egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix}$$

The scalar product of \boldsymbol{x} and \boldsymbol{y} is a scalar obtained by summing all elementwise products. That is,

$$\boldsymbol{x}^{\top}\boldsymbol{y} = \boldsymbol{y}^{\top}\boldsymbol{x} = x_1y_1 + x_2y_2 + x_3y_3.$$