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Multivariate Analysis

OBJECTIVE
This chapter goes beyond the description of abstract concepts and the associated compu-
tational methods. The objective is to explore and understand the story that is told by the
intraclass correlation coefficient (ICC) and their precision measures. I will first discuss bench-
marking techniques that would help you qualify the magnitude of the ICC based on a bench-
mark scale that determine the ICC’s degree of acceptability. I will also discuss about some
influence analysis techniques that can be used to identify problem raters responsible for low-
ering the ICC. Such techniques could be useful for indetifying raters who may need further
training to improve the overall ICC. Finally, this chapter will address the important prob-
lem of multivariate intraclass correlation. This problem results from the need for a global
agreement coefficient when several measurements are taken on the same subject. Existing
multivariate Intraclass Correlation Coefficients will be discussed as well as a new approach
based on principal component analysis.
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9.1. Overview - 265 -

9.1 Overview

From chapter 3 through chapter 7, we have explored various methods for eval-
uating the extent of agreement among raters that produced quantitative measure-
ments. Agreement was quantified using either the intraclass correlation coefficient
under different ANOVA models, or the Finn’s coefficient. I also discussed the way to
calculate precision measures in the form of confidence intervals and p-values. This
chapter focuses on interpreting these agreement coefficients and on extending the
univariate methods of the previous chapters so that multivariate rating data can be
analyzed as well.

For the sake of interpreting ICC coefficients, I will confine myself the 2 tasks
of benchmarking and influence analysis. Benchmarking an ICC estimate consists of
matching it against a benchmark scale so as to determine its degree of acceptability.
The benchmark scale is an exhaustive list of ICC ranges and the associated descrip-
tion of the strength of agreement. The specific benchmark scale that is used in the
chapter is that proposed by Koo and Li (2016). It is one of the very few benchmark
scales in the literature of quantitative inter-rater reliability that I know of, and which
is discussed in section 9.2. Influence analysis on the other hand, aims at identifying
problem raters in cases where the ICC is deemed low or not sufficiently high. A
measure of influence of each individual rater is calculated and those raters with the
highest negative impact on the overall ICC are identified and corrective actions can
be taken. Influence analysis is discussed in section 9.3.

Section 9.3 is devoted to multivariate analysis of inter-rater reliability. When deal-
ing with a single variable, the ICC can be calculated using one of the many methods
discussed in Part-II chapters. However, there are situations where each rater takes
several often correlated measures on the same subject. Although separate indepen-
dent univariate analyses can always be conducted on each of the measurements,
providing a global inter-rater reliability assessment for all these variables may be
difficult due to the possibly high correlation among these variables. In section 9.3, I
will briefly review the literature on this topic before proposing a new approach based
on principal component analysis.

9.2 Benchmarking Intraclass Correlation Coefficients

In chapters 4, 5 and 6, I presented several intraclass correlation coefficients
(ICC) without discussing any criterion or standard of acceptability. In other words,
what magnitude of the ICC should represent “poor,” or “good” agreement among
raters? The set of ICC ranges that would define such criteria or standards is generally
referred to as the benchmark scale, and the task of evaluating any specific ICC against
it is known as Benchmarking . If this issue was not discussed, it is primarily because
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- 266 - Chapter 9: Intraclass Correlation & Multivariate Analysis

there is no known criterion or standard of acceptability in the inter-rater reliability
literature. However, Koo and Li (2016) briefly discussed this problem and proposed
a benchmark scale that will be discussed in this chapter.

Table 9.1: The Koo-Li ICC Benchmark Scalea

ICC Range Strength of Agreement

0 ≤ ICC < 0.50 Poor

0.50 ≤ ICC < 0.75 Moderate

0.75 ≤ ICC < 0.90 Good

0.90 ≤ ICC < 1 Excellent

aThis benchmark scale is from Koo and Li (2016)

Benchmarking the ICC is a task that must be conducted carefully. Several factors
could have a substantial impact on the magnitude of the ICC, and should be ac-
counted for when interpreting your analysis. Here are 4 of the most important of
these factors:

• Subject Variance Magnitude

The size of the subject variance is a key factor impacting the magnitude of the
ICC. Therefore, ICC-based inter-rater reliability experiments should be based
on subject samples that were randomly selected from a relatively heterogenous
subject population. Otherwise, a homogeneous subject sample will inevitably
leads to a low ICC.

In general, the ICC is quantified as the ratio of the subject variance to the
total variance. Total variance includes the rater variance among other vari-
ance components. This rater variance that appears in the denominator may be
measurable or not depending on the underlying ANOVA model used. Either
way, this rater variance component does exist. When the ICC is high, then you
know the subject variance exceeds the rater variance by a significant margin,
and the extent of agreement among raters can rightfully be considered to be
good. However, if the ICC is low then you can claim there is no evidence sug-
gesting a high agreement among raters. It is a conclusive proof of the absence
of agreement. Instead, it proves that the dominant component in total variance
is either the rater variance (suggesting low agreement) or the error variance
(suggesting poor experiment planning).

• Underlying ANOVA Model

The study of ICCs in the past few chapters has revealed that the ANOVA
model that underlies the ICC also impacts its magnitude and the way it should

Get the entire ebook for $19.95 using the link: https://sites.fastspring.com/agreestat/instant/icc5ed978_1_7923_5464_9e

https://agreestat.com/books/icc5/ https://agreestat.com/books/



9.2. Benchmarking Intraclass Correlation Coefficients - 267 -

be interpreted. Therefore, the ANOVA model used should be an integral part
of the reported results as suggested by Koo and Li (2016).

• Subject Sample Size

A small number of subjects will yield an ICC with a large variance. This lack of
precision will make the ICC an unreliable estimate of the extent of agreement
among raters. That is, two subject samples of the same small size could possibly
yield 2 substantially different ICC estimates. Therefore, the precision associated
with the ICC estimate must be an integral part of the benchmarking process.

• Raters’ Background

The raters participating in an inter-rater reliability experiment need to receive
basic training in the scoring of a pilot subject sample. This will minimize the
risk of a systematic bias in the scoring, producing a constant gap between
2 series of ratings. The ICC may not interpret such a systematic bias as a
disagreement.

An intraclass correlation coefficient that is calculated based on experimental data
is a rough approximation (i.e the estimate) of the actual intraclass correlation (the
estimand). The benchmark scale of Table 9.1 is normally meant to be used with the
estimand. Since the estimate is subject to statistical error, benchmarking it against
the Koo-Li benchmark scale requires a more elaborate procedure.

9.2.1 Benchmarking under Model 1A

Consider the children lung function data of Table 9.2. The ICC and asso-
ciated 95% confidence interval for this dataset under the Model 1A ANOVA model
are given by,

ICC = 0.752 and the 95% confidence interval is (0.557 to 0.894). (9.2.1)

By simply using the ICC and the Koo-Li benchmark table, you would conclude that
the strength of agreement is “Good.” However, the 95% confidence interval suggests
that “true” ICC value could be between 0.557 and 0.894, which qualifies the strength
of agreement as “Moderate” to “Good.” The confidence interval is a measure of
precision, which accounts for the underlying Model 1A, the number subjects and
raters in the experiment. Its use in the benchmarking process is essential to account
for the many factors that impact the ICC magnitude. The confidence interval has
a disadvantage. It does not tell us where the extent of agreement is more likely to
Moderate than Good or vice-versa. To resolve this problem, I recommend assigning
a membership probability to each ICC range of Table 9.1 as shown in Table 9.3.

Table 9.3 indicates that the true ICC could be good with a 51.82% probability
whereas it could Moderate with a 45.55% probability. Moreover, it is on the “Mod-
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erate” interval that the cumulative membership probability exceeds the threshold of
95%. Therefore, I recommend qualifying the extent of agreement as Moderate.

Note that the benchmarking process described in this section is based on Model
1A. Consequently, for any given interval (l, u) the associated membership probability
based on Model 1A is given by,

θ(l, u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P

(
0 ≤ F ≤ F0

1 +Ml/
[
n(1− l)

]), if u = 1,

P

⎛⎜⎝ F0

1 +
M

n

u

1− u

≤ F ≤ F0

1 +
M

n

l

1− l

⎞⎟⎠ , otherwise.

(9.2.2)

where F is a random variable following the F distribution with n − 1 and M − n
degrees of freedom, F0 = MSS/MSE, n is the number of subjects that were rated
and M the total number of ratings produced by all raters. For Table 9.2 data, n = 15
and M = 60.

Table 9.2: 15 children lung function measurements representing the peak expiratory
flow rates (PEFR)a

Subject Rater (j)

(i) 1 2 3 4

1 190 220 200 200
2 220 200 240 230
3 260 260 240 280
4 210 300 280 265
5 270 265 280 270
6 280 280 270 275
7 260 280 280 300
8 275 275 275 305
9 280 290 300 290
10 320 290 300 290
11 300 300 310 300
12 270 250 330 370
13 320 330 330 330
14 335 320 335 375
15 350 320 340 365

aSource: Bland MJ, Altman DG. Statistics Notes: Measurement error. British Medical Journal
1996;312:1654 (extract)
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Table 9.3: Implementing the Koo-Li ICC Benchmark Scale

Strength of Interval Cumulative

ICC Range Agreement probability Probability

0.90 ≤ ICC < 1 Excellent 0.0189 0.0189
0.75 ≤ ICC < 0.90 Good 0.5182 0.5371
0.50 ≤ ICC < 0.75 Moderate 0.4555 0.9927
0 ≤ ICC < 0.50 Poor 0.0073 1

9.2.2 Benchmarking under Alternative ANOVA Models

In section 9.2.1, benchmarking was presented under the assumption that
the ICC is calculated based on model 1A. If you base your ICC calculations on an
alternative model (e.g. Model 1B, Model 2 or Model 3) then equation 9.2.2 needs to
be revised. For any interval (l, u) the following expressions must be used:

• Model 1B
Under Model 1B, the interval membership probabilities are calculated as fol-
lows:

θ(l, u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P

(
0 ≤ F ≤ F0

1 +Ml/
[
r(1− l)

]), if u = 1,

P

⎛⎜⎝ F0

1 +
M

r

u

1− u

≤ F ≤ F0

1 +
M

r

l

1− l

⎞⎟⎠ , otherwise,

(9.2.3)

where F is a random variable that follows the F with r−1 and M−r degrees of
freedom. F0 = MSR/MSE, MSE and MSR are respectively given by equations
4.3.7 and 4.3.8 of chapter 4, and r is the number of raters.

• Model 2
Under Model 2, the interval membership probabilities for ICC(2,1) of equation
5.2.3 (inter-rater reliability) are calculated as follows:

θ(l, u) =

⎧⎪⎪⎨⎪⎪⎩
P

(
0 ≤ F ≤ Fl

)
, if u = 1,

P
(
Fu ≤ F ≤ Fl

)
, otherwise,

(9.2.4)
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where F is a random variable that follows the F distribution with n − 1
and v degrees of freedom1. Moreover, Fl and Fu are defined as follows: Fl =
MSS/(alMSR + blMSI + clMSE) and Fu = MSS/(auMSR + buMSI + cuMSE).
Note that al = rl/

[
n(1 − l)

]
, bl = 1 + r(n − 1)l/

[
n(1 − l)

]
, and cl = (M/n −

r)l/(1 − l). au, bu and cu are calculated in a similar manner, by replacing the
interval lower bound l with its upper bound u throughout.

For the intra-rater reliability coefficient estimated by ICCa(2, 1) of equation
5.2.16, you need to use equations 5.3.13, 5.3.14 and 5.3.15.

• Model 3
Under Model 3, the interval membership probabilities for ICC(3,1) of equation
6.2.9 (inter-rater reliability) are calculated as follows:

θ(l, u) =

⎧⎪⎪⎨⎪⎪⎩
P

(
0 ≤ F ≤ Fl

)
, if u = 1,

P
(
Fu ≤ F ≤ Fl

)
, otherwise,

(9.2.5)

where F is a random variable that follows the F distribution with n − 1
and v degrees of freedom2. Moreover, Fl and Fu are defined as follows: Fl =
MSS/(alMSI+ blMSE) and Fu = MSS/(auMSR+ buMSI+ cuMSE). Note that
al = rl/

[
n(1− l)

]
, bl = 1+r(n−1)l/

[
n(1− l)

]
, and cl = (M/n−r)l/(1− l). au,

bu and cu are calculated in a similar manner, by replacing the interval lower
bound l with its upper bound u throughout.

For the intra-rater reliability coefficient estimated by ICCa(3, 1) of equation
6.2.10, you need to use equations 6.3.8, 6.3.9 and 6.3.12.

9.3 Influence Analysis

Influence analysis consists of quantifying the impact (positive or negative) that
each rater has on the overall extent agreement among raters. The primary objective
of influence analysis is to identify problem raters that may need additional training
to bring them up to speed. Therefore, you will worry about this issue only if you
are dissatisfied with the low ICC value and would like explain what is causing this
lack of agreement. You want to able to target specific raters who need to improve
their proficiency in scoring subjects. Is low ICC the result of one rater that disagrees

1Note that v is defined by equation 5.3.8 of chapter 5 and can be calculated by replacing the ICC
with its estimated value.

2Note that v is defined by equation 6.3.4 of chapter 6 and can be calculated by replacing the ICC
with its estimated value.
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with the rest of the group? Is it the result of 2 or 3 raters? These are the types of
questions that influence analysis addresses.

The influence that a given rater k has on the ICC is defined as follows:

αk =
ICC(−k) − ICC

ICC
, (9.3.1)

where ICC(−k) is the intraclass correlation coefficient calculated based on a rater
sample from which rater k had been previously removed and ICC, the intraclass
correlation based on the full sample. Rater k’s influence αk represents the relative
change in the ICC magnitude due to the removal of one specific rater k from the
roster of rater. Each individual rater’s influence must be calculated and evaluated
and compare to that of other raters.

Consider once again the children lung function measurements of Table 9.2. The
extent of agreement among the 4 raters was evaluated by a Model-1A-based ICC to
be 0.752. The results obtained from the influence analysis are shown in Table 9.4
and depicted in Figure 9.1. It follows from this figure that removing Rater 1 from
the rater sample does not affect the ICC much (it actually results in a reduction of
1% as shown in Table 9.4). However, removing Rater 2 leads to a dramatic increase
of 6%. The most problematic raters are those associated with the highest (positive)
influence value. In this case, it is rater 2. That is the 3 raters 1, 3 and 4 agree among
themselves more than they agree with rater 2. It appears that rater 2 is an outlier
in the roster of raters and must be examined.

After removing rater 3, the ICC takes a dive of more than 8%. Consequently,
rater 3 appears to agree with each of the other raters more than they agree among
themselves, and cannot be problematic. Similarly, rater 4’ influence is only 2.76%
an is relatively small. A limitation of influence analysis as a method of identifying
problem raters lies in its ability to identify a single problem rater at a time (the most
problematic). This is not a problem if the number of raters is limited. If the number
of raters becomes large, this procedure could take time before all problem cases are
identified and resolved.
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Table 9.4: Influence analysis of the children lung function data of Table 9.2

k ICC(−k) αk

1 0.7429 -1.14%
2 0.7984 6.24%
3 0.6904 -8.12%
4 0.7723 2.76%

(	)a 0.7515 0%

aNo rater removed. Calculations based on the full roster of 4
raters.

1 2 3 4

−8

−4

0

4

8

Rater (k)

α
k
(%

)

Figure 9.1: Influence analysis of the children lung function ratings of Table 9.2.

9.4 A Multivariate Approach to Inter-Rater Reliability

In section 4.1 of chapter 4, I discussed the intraclass correlation coefficient
(ICC) under the one-way random subject factor model. While the focus was on the
analysis of a single variable (i.e. univariate analysis), numerous applications nowadays
require that several correlated variables be measured for each individual subject.
Analyzing these correlated variables independently using Chapter 4 methods will
ignore the extent to which the magnitude of one variable affects the other variables
associated with the same subject. Consequently, your global assessment of agreement
could be misleading. It is to account for the inter-dependency of several variables
measured on the same subject that a number of authors have developed generalized
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versions of the intraclass correlation coefficient that I am going to discuss in this
section.

The objective in section 4.1 of chapter 4, was to quantify the extent of agreement
among raters when different subjects may be rated by different groups of raters.
Since intraclass correlation is not calculated for a specific group of raters under this
model, ICC represents more a general measure of reproducibility than inter-rater
reliability measure since the raters as well as other unspecified factors may contribute
to total variation in the ratings. The statistical model used to describe the data was
formulated as follows:

yijk = μ+ si + eijk, (9.4.1)

where yijk is the rating associated with subject i, rater j and replicate k. Note that
the term replicate in this context refers to an independent measurement taken on
the same subject i by the same rater j under supposedly the same conditions. But
all measurements are related to the same one variable labeled as y.

However, with the development of imaging technology particularly in the med-
ical field, more and more subjects are images on which not just one variable is
measured. Instead, several variables are often necessary for one rater to describe a
single image. It is near impossible to describe (with any accuracy) even the simplest
three-dimensional picture with a single number. A cube is the only one I can think
of. Any other three-dimensional image will require 2 variables or more. Depending on
what you are investigating, any image of the human heart may require a considerably
large number of variables to be measured.

Table 9.5 from Wu et al. (2019) summarizes some MRI measurements of the
plantar fascia thickness. It follows from this table that for each human subject (male
or female), a total of 6 × 2 = 12 measurements must be taken. If there must be
replication, then another 12 measurements will have to be taken again. Note that
each individual measurement in Table 9.5 can be analyzed using model 9.4.1 and
the associated intraclass correlation coefficient. However, this approach presents two
problems that you need to know:

• The number of individual models to develop can become quite large. For Table
9.5 only, 12 models are needed for males, or females or for males and females
combined.

• The bigger issue however, stems from the fact that the univariate approach just
mentioned, does not account for the correlation or the covariance structure that
is likely to exist between the variables associated with the same subject.

Consequently, several authors have developed alternative approaches for analyzing
multivariate rating data, some of which are reviewed in the next section.
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Table 9.5: MRI Measurements of the Average Thickness of the Plantar Fascia (in
Millimeter)

Male Female
Section Left Right Left Right

Origin (LSa) 2.87 2.86 2.56 2.55
Central Part (LS) 2.02 2.01 1.82 1.81
Insertion (LS) 1.31 1.29 1.16 1.17
Origin (TSb) 2.88 2.85 2.59 2.58
Central Part (TS) 2.05 2.01 1.82 1.83
Insertion (TS) 1.32 1.35 1.20 1.19

aLS = Longitudinal Section
bTS = Transverse Section

9.4.1 Review of Existing Multivariate Approaches

Shou et al. (2013) proposed a general method for quantifying the generalized
Intraclass Correlation Coefficient for quantitative ratings, which they referred to
as the I2C2 for Image Intra-Class Correlation (IICC or I2C2). When the ratings
are binary, Yue et al. (2015) proposed the graphical intra-class correlation (GICC),
which is based on a multivariate logit model. Since the logit model does not link the
formulation of GICC to an explicit correlation coefficient, its validity may require
more justification. Consequently, I focus on the I2C2 coefficient of Shou et al. (2013).

Let us assume that each subject is represented by T different variables labeled
as

(
yijk(1), · · · , yijk(t), · · · , yijk(T )

)
, where yijk(t) is the rating pertaining to the tth

variable, and associated with subject i, rater j and replicate k. In the field of medical
imaging for example, T may be known to researchers as the number of voxels (could
be the different sections of an image researchers have decided to investigate). For the
general framework I am dealing with, I will refer to T as the number of variables
being measured. Let yyyijk be the T -dimensional vector representing subject i, rater j
and replicate3 k. Therefore,

yyyijk =
(
yijk(1), · · · , yijk(t), · · · , yijk(T )

)
. (9.4.2)

Shou et al. (2013) hypothesized the ANOVA model 1A for each of the T variables
(see section 4.1 of chapter 4 for a discussion of univariate ANOVA model 1A) defined

3Note that what Shou et al. (2013) refer to as replicate j is actually rater j in my current context.
Replicates here represent multiple measurements the same rater j may take on the same subject i
using the same variable t under similar conditions.
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