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Intraclass Correlations under
the Random Factorial Design

OBJECTIVE
This chapter aims at presenting methods for calculating various intraclass correlation coeffi-
cients and associated precision measures when the rater and subject factors are fully crossed.
Each rater is expected to rate all subjects, but may take more measurements on some sub-
jects and less on others. The rater and subject samples are both assumed to have been
randomly selected from larger rater and subject populations. I define two types of intraclass
correlation coefficients(ICC): (i) the ICC for quantifying inter-rater reliability, and (ii) the
ICC for quantifying intra-rater reliability. For both types of intraclass correlation coefficients,
methods for obtaining confidence intervals, p-values, and optimal sample sizes (i.e. required
number of subjects and raters during the design of experiments) are presented as well.
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5.1. The Issues - 117 -

5.1 The Issues

The Intraclass Correlation Coefficient (ICC) associated with Model 1A, is the
ratio of the subject variance to the sum of the subject and error variances. What was
termed error variance in the previous chapter is in reality the variance of a combi-
nation of three effects, which are the rater effect, a possible rater-subject interaction
effect1 and the experimental error effect. Because these three effects are blended
together, they are interdependent, and their combined variance is expected to be
higher than if the experiment was designed to keep them independent2. Therefore,
the researcher can improve the magnitude of the ICC substantially by designing the
experiment so as to keep all the factors at play independent from one another. This
is accomplished by getting each rater to score all subjects. Such a design is known
as the factorial design and is the subject of this chapter.

The ICC associated with Model 1B on the other hand, quantifies the intra-rater
reliability and was defined in the previous chapter as the ratio of the rater variance
to the sum of the rater and error variances. Once again, the error variance in the
context of model 1B is actually the variance of the combined effect due to the subject,
the rater-subject interaction and the experimental error. The experimental design
that underlies model 1B (i.e. each rater scores a different group of subjects) has
blended these three effects into one. Consequently, the variance of the combined effect
will often be high, reducing thereby the magnitude of the ICC. If an experiment is
designed so that the rater, rater-subject interaction, and error effects are independent
from one another, then the variance due to their interdependency will be eliminated
leading to a higher ICC for the same amount of data collected. This is the factorial
design mentioned in the previous paragraph.

There are different types of factorial designs that may achieve different objectives.
We will now review some of them.

Types of Factorial Designs

The factorial design is an experimental design where each rater is expected to rate all
subjects participating in the experiment. The main advantage of this design is that
all the factors involved in the experiment are kept independent from one another.
That is, you can fix a specific rater and study the subject effect; just as you may
fix a specific subject so as to study the rater effect. If two measurements or more

1The rater-subject interaction can be seen as the portion of the rater effect that may be attributed
to the specific subject being rated.

2Note that if a and b are 2 dependent effects, then their combined variance will be var(a+ b) =
var(a) + var(b) + 2cov(a, b), where cov(a, b) is the covariance between a and b. If the effects are
independent, the covariance term will vanish, the joint variance will decrease (assuming a positive
covariance, which is usually the case in agreement studies).
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- 118 - Chapter 5: ICC under the Random Factorial Design

are taken from one subject by the same rater, then one may study the rater-subject
interaction effect independently from the experimental error.

Rater-subject interaction is bad for both inter-rater and intra-rater reliability,
but is sometimes unavoidable. It induces more variation in the data, in addition to
the portion of total variation that is due to raters and subjects. This extra variation
will further reduce the magnitude of the ICC. Figure 5.1 depicts the reliability data
of Table 4.1 of chapter 4. Without interaction, all 4 curves associated with the raters
would be reasonably parallel, which is the case for raters 1, 2, and 3. Rater 4 however,
appears to assign scores to subjects with a gap with other raters that changes from
subject to subject. This is an indication of the existence of rater-subject interaction.
Rater 4 alone is likely to bring the ICC down in a significant way.
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Figure 5.1: Ratings of 6 subjects by rater

Two types of factorial designs involving the subject and rater factors are the
random and mixed factorial designs. The random factorial design is a design where
the rater and the subject effects are random, while the mixed factorial design is one
where the rater effect is fixed and the subject effect random.

In the random factorial design, the raters participating in the experiment are
selected randomly from a larger universe of raters, and the participating subjects are
selected randomly from a larger universe of subjects. The subjects and raters in their
respective universes are actually those the researcher wants to investigate in the first
place. The samples representing subgroups of these universes are used to minimize
the costs of conducting experiments. It is the desire to draw meaningful conclusions
about entire universes from their smaller representative samples that creates the need
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5.2. The Intraclass Correlation Coefficients - 119 -

to use statistical methods.

In the mixed factorial design on the other hand, only participating subjects are
selected randomly from a larger subject universe. The participating raters are not
tied to any other group of raters. They represent themselves, and are the only ones
being investigated by the researcher. The study findings will only apply to these
raters, and cannot be generalized to raters who did not participate in the experi-
ment. For example, consider a reliability experiment whose purpose is to evaluate
the consistency level between two measuring devices used in rheumatology clinical
examinations. The researcher in this case, will want the study findings to be limited
to the two specific measuring devices being investigated, and not be generalized to
other devices that may not be similar to those used in the experiment. Experiments
based on mixed factorial designs will often yield a higher ICC than those based on
the random factorial designs, because no variation is generated by the rater effect
when the design is mixed.

In this chapter, I will focus on the statistical methods used for analyzing exper-
imental data based on the random factorial design. Methods needed for analyzing
mixed factorial designs will be discussed in the next chapter.

5.2 The Intraclass Correlation Coefficients

The random factorial design involves a single group of raters as well as a
single group of subjects, all of which are rated by each rater. That is the rater and
subject factors are fully crossed. Table 5.1 shows lung functions data of 15 children
representing their peak expiratory flow rates. Four measurements were taken on each
subject by 4 raters. The raters here could represent 4 individuals operating the same
measuring device, or one individual using the same measuring device on 4 different
occasions. The data produced in these two scenarios can be analyzed with the same
methods discussed in this section, although the results may be interpreted differently
depending on the context.

Table 5.1 data were generated by a single group of 4 raters, each of whom rated
all members of the same group of 15 subjects. We assume that the 4 raters are
representative of a larger pool of raters they were selected from. Likewise, the 15
children are assumed to represent the larger population of children of interest they
were randomly selected from.
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- 120 - Chapter 5: ICC under the Random Factorial Design

Table 5.1: 15 children lung function measurements representing the peak expiratory
flow rates (PEFR)a

Subject Rater (j)

(i) 1 2 3 4

1 190 220 200 200
2 220 200 240 230
3 260 260 240 280
4 210 300 280 265
5 270 265 280 270
6 280 280 270 275
7 260 280 280 300
8 275 275 275 305
9 280 290 300 290
10 320 290 300 290
11 300 300 310 300
12 270 250 330 370
13 320 330 330 330
14 335 320 335 375
15 350 320 340 365

aSource: Bland MJ, Altman DG. Statistics Notes: Measurement error. British Medical Journal
1996;312:1654 (extract)

Table 5.1 scores are described mathematically as follows:

yijk = μ+ si + rj + (sr)ij + eijk, (5.2.1)

where yijk is the score assigned to subject i by rater j on the kth trial3. The remaining
terms of model 5.2.1 are defined as follows:

� μ is the expected value of the y-score for all subjects and raters.

� si is the random subject effect, assumed to follow the Normal distribution with
0 mean, and a variance σ2

s . Moreover, cov(si, si′) = 0, if i �= i′. That is the
random subject effects are pairwise independent.

� rj is the random rater effect, assumed to follow the Normal distribution with
mean 0, and variance σ2

r . These rater effects are pairwise independent. That is,
cov(rj , rj′) = 0, if j �= j′.

3Many reliability experiments only involves one trial (the first one)
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� (sr)ij is the random subject-rater interaction effect, assumed to follow the Nor-
mal distribution with mean 0, and variance σ2

sr. The interaction effects are as-
sumed to be pairwise independent, with cov

(
(sr)ij , (sr)i′j′

)
= 0, if (i, j) �= (i′, j′).

� eijk is the random error effect, assumed to follow the Normal distribution with
mean 0, and variance σ2

e .

� The subject, rater, and interaction effects are considered to be mutually inde-
pendent. That is, the magnitude of one does not affect that of another effect.

It is essential for researchers to have a good understanding of the practical impli-
cations of some of these assumptions. Let us assume that the reliability experiment
being analyzed involves n subjects, r raters, and m replicates (or trials). The fact
that all rater effects (i.e. the rj factors for raters j = 1, · · · , r) share the same mean
and the same variance σ2

r indicates that all these raters have a similar understanding
of the rating processes with their differences being random. If one rater systemati-
cally assigns high ratings to subjects, while a second rater assigns very low ratings
to the same subjects, then the analysis of these ratings with model 5.2.1 may not
be conclusive. This model will make the error term absorb most of the unexplained
variation in ratings, which will result in low inter-rater and intra-rater reliability
coefficients. Consequently, the ratings being analyzed must come from raters with
a common understanding of the rating processes, which can be acquired with basic
training.

Model 5.2.1, also referred to as Model 2 in the inter-rater reliability literature
(see Shrout and Fleiss, 1979), stipulates that under the random factorial design, the
different effects are additive, independent, and follow the Normal distribution. Unlike
model 1A and 1B of the previous chapter, Model 5.2.1 allows for the calculation of
both the inter-rater, and intra-rater reliability coefficients. I will review each of these
coefficients in the next few sub-sections.

5.2.1 Inter-Rater Reliability Coefficient

An inter-rater reliability based on model 5.2.1 is by definition the correlation
coefficient between the scores yijk and yij′k associated with two raters j and j′, the
same subject i, and the same trial number k. It follows from equation 5.2.1 that the
inter-rater reliability (denoted by ρ) is defined4 as,

ρ =
σ2
s

σ2
s + σ2

r + σ2
sr + σ2

e

(5.2.2)

4Note that ρ = Corr(yijk, yij′k) = Cov(yijk, yij′k)/
[√

Var(yijk)
√

Var(yij′k)
]
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- 122 - Chapter 5: ICC under the Random Factorial Design

The question to be asked at this stage is whether equation 5.2.2 actually measures
the extent of agreement among the r raters that participated in the experiment.
A carefully examination of expression 5.2.2 suggests that ρ varies from 0 to 1, and
takes a high value closer to 1 only when the subject variance σ2

s exceeds the combined
variance σ2

r +σ2
sr+σ2

e by a wide margin. This will happen when the sum σ2
r +σ2

sr+σ2
e

is small, which in turn indicates that the rater variance σ2
r is small. And a small rater

variance σ2
r is a clear indication of high agreement among raters.

If a large value of ρ is a strong indication of good inter-rater agreement, can we
say that a good inter-rater agreement will also result in a high value for ρ? The
answer is unfortunately “not necessarily.” In reality, a good inter-rater agreement
will result in a high value for ρ only if the experiment is sufficiently well designed so
as to keep the experimental error to the minimum. Again, it follows from equation
5.2.2 that a large error variance σ2

e will bring the whole ICC expression down even
if the rater variance is small. Consequently,

if the ICC yields a high value, you can be certain that the extent of
agreement among raters is good. However, if the ICC value is low, it is
not necessarily an indication of poor agreement. It could be an indication
of a poorly-designed experiment, and you may need to conduct additional
analyzes.

The experimental error may become unduly large, if your experiment is conducted
in such a way that there are many uncontrolled factors that affect the magnitude
of the scores other than the subject and the rater. These uncontrolled factors could
be the location of the subject, major changes in experimental conditions such as the
temperature, the measuring equipment or others. If the primary study objective is
to obtain the ICC then the experimenter will want to design the experiment so that
the subject and the rater are the most influential factors on the score magnitude.
Adding more factors (controlled or uncontrolled) will negatively affect the ICC.

Calculating Inter-Rater Reliability

To compute the intraclass correlation coefficient from actual data, I again propose,
a method that can handle missing scores, and which is an adaptation of what Searle
(1997, page 474) has recommended. This method is more general than that pro-
posed by Shrout and Fleiss (1979) , which cannot handle missing values. But both
approaches match perfectly well when the data do not contain missing values.

The ICC of equation 5.2.2 is estimated from raw experimental data by calculating
the 4 variance components σ2

s , σ
2
r , σ

2
rs, and σ2

e . The calculated subject, rater, rater-
subject interaction, and error variances are respectively denoted by σ̂2

s , σ̂
2
r , σ̂

2
rs, and

σ̂2
e . The calculated intraclass correlation coefficient is denoted by ICC(2,1)5 and given

5The notation ICC(2,1) is widely used in the inter-rater reliability literature. ICC stands for
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by:

ICC(2, 1) =
σ̂2
s

σ̂2
s + σ̂2

r + σ̂2
rs + σ̂2

e

. (5.2.3)

When there is no missing ratings, these variance components are conveniently
calculated using a number of means of squares as shown in Shrout and Fleiss (1979)
or McGraw and Wong (1996). The Shrout-Fleiss and McGraw-Wong procedures
are discussed later in this section. Here, I like to first describe one method for cal-
culating the variance components that accounts for missing ratings. This method is
known in the statistical literature as the “Henderson Method I.” There are several
approaches for handling missing ratings that are proposed in the literature. My choice
of the Henderson Method I is essentially motivated by its simplicity. The variance
components are calculated as follows:

σ̂2
e = (T2y − T2sr)/(M − λ0), (5.2.4)

σ̂2
sr =

[
(M − k′1)δr + (k3 − k′2)δs

−
(
T2s − T ′ 2

y − (n− 1)σ̂2
e

)]/
(M − k′1 − k′2 + k′5), (5.2.5)

σ̂2
r = δs − σ̂2

sr, (5.2.6)

σ̂2
s = δr − σ̂2

sr, (5.2.7)

where,

• T2y is the summation of all squared values y2ijk.

• T2sr is the summation of all factors y2ij·/mij , with yij· being the total score value
over all replicates associated with subject i and rater j, and mij the number

of measurements taken on subject i by rater j.

• M is the total number of measurements produced by the experiment, while λ0

is the number subject-rater combinations for which one measurement or more

were produced (i.e. the number of (i, j)-cells for which mij ≥ 1).

• k′1 = k1/M , where k1 is the summation of all m2
i· with mi· being the number

of measurements taken on subject i.

Intraclass Correlation Coefficient, while “2” refers to model 2, and “1” indicates that each rating
represents a single raw measurement, and not an average of several measurements.
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• δr =
[
T2sr −T2r − (λ0− r)σ̂2

e

]
/(M − k4), where T2r is obtained by summing all

the terms y2·j·/m·j , with y·j· being the total score value associated with rater j.

Moreover k4 is calculated by summing all the terms m2
ij/m·j , with m·j being

the number of measurements taken by rater j on all subjects.

• δs =
[
T2sr −T2s− (λ0−n)σ̂2

e

]
/(M − k3), where T2s is obtained by summing all

the terms y2i··/mi·, with yi·· being the total score value associated with subject

i. Moreover, k3 is calculated by summing all the terms m2
ij/mi·.

• k′2 = k2/M , where k2 is calculated by summing the terms m2
·j over all raters.

• T ′ 2
y = T 2

y /M , where Ty is the summation of all scores yijk, and k′5 = k5/M
with k5 calculated by summing the terms m2

ij .

The calculation of the inter-rater reliability is described here for the factorial
model with interaction effect. Such a model requires repeated measurements to be
taken on the same subject. This is not always feasible, particularly if taking one
measurement is very demanding on subjects. In this case, the researcher may prefer
the use of a simpler model based on a single rating per subject and per rater, and
in which the error and interaction effects are blended together. The calculation of
the inter-rater reliability coefficient under this simpler model is discussed in section
5.5.1.

The following example illustrates how the intraclass correlation coefficient ICC(2,1)
is calculated under model 5.2.1.

Example 5.1

For the purpose of this example, I have made two modifications to Table 5.1 to obtain
Table 5.2 that will be analyzed. First, the number of children is reduced to 8, and
two or three measurements were taken on some of the children. Second, the number of
ratings per subject may vary from one rater to another creating some missing ratings
as shown in Table 5.2.

Table 5.2 also contains some subject-level statistics such as the subject mean score, the
subject standard deviation, and the mean score difference6. Figure 5.2 shows the graph
of the subject mean score difference (c.f. column 8 of Table 5.2) against the subject
mean score (c.f. column 6 of Table 5.2), and provides a visual assessment of the extent
of agreement among the four raters. This graph can be seen as a version of what is
known in the literature as the Bland-Altman plot - see Bland and Altman (1986). It
follows from this graph that the 4 raters agree reasonably well with a possible exception

6The mean score difference is calculated separately for each subject by averaging all six pairwise
differences associated with the six pairs of raters that can be formed out of the group of four raters.

Get the entire ebook for $19.95 using the link: https://sites.fastspring.com/agreestat/instant/icc5ed978_1_7923_5464_9e

https://agreestat.com/books/icc5/ https://agreestat.com/books/
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of an outlier associated with a mean score of 303.75 and a mean score difference of
32.5.

Figure 5.3 on the other hand, depicts the subject standard deviation7 as a function
of their overall mean score. It offers another look at the rater agreement as the score
magnitude changes, and is know in the literature as the repeatability plot (see Bland
and Altman, 1996). This plot is often used for repeated measures, and can identify
more outliers that the first plot would not. Both figures 5.2 and 5.3 tell about the same
story showing an overall good agreement with the exception of 1 or 2 outliers.

The intraclass correlation coefficient ICC(2,1) of equation 5.2.3 is given by,

ICC(2, 1) =
1, 627.395

1, 627.395 + 82.507 + 0 + 460.897
,

= 0.7497,

where σ̂s = 1, 627.395, σ̂r = 82.507, and σ̂e = 460.897. As for the interaction variance
component σ̂rt, it was initially estimated to be a negative value -97.55, which was later
replaced by 0 since the variance cannot be negative. The negative value obtained here
is likely due to insufficient data for an accurate estimation of the interaction effect.

To see the details of these calculations, interested readers may look at the “Example
5.1” worksheet in the Excel spreadsheet,

www.agreestat.com/books/icc5/chapter5/chapter5examples.xlsx,

which shows the step-by-step calculations of ICC(2,1) for this example, from the input
data of Table 5.2 to the final result of 0.7497.

7This standard deviation is that of all scores associated with one subject.
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Table 5.2: Eight children lung function measurements representing the peak
expiratory flow rates (PEFR)

Subject Rater (j) Standard Mean

(i) 1 2 3 4 Mean Score Deviation Difference

1 190 220 200 200
1 220 200 240 230 212.50 17.53 6.67

2 260 260 240 280
2 210 300 280 265 261.88 27.51 15.42

3 270 265 280 270
3 280 280 270 275
3 260 280 300 275.45 10.60 6.53

4 275 275 275 275.00 0.00 0.00

5 280 290 300 290
5 320 290 300 290 295.00 11.95 -3.33

6 300 300 310 300
6 270 250 330 370 303.75 36.23 32.50

7 320 330 330 330
7 320 335 375 334.29 18.80 17.50

8 350 320 340 365 343.75 18.87 10.83

(303.75, 32.5)
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Figure 5.2: Mean score difference versus mean score based
on Table 5.2 data.

Get the entire ebook for $19.95 using the link: https://sites.fastspring.com/agreestat/instant/icc5ed978_1_7923_5464_9e

https://agreestat.com/books/icc5/ https://agreestat.com/books/



5.2. The Intraclass Correlation Coefficients - 127 -
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Figure 5.3: Repeatability plot showing the standard deviation against
the mean score based on Table 5.2 data.

Some Simplifications with Complete Rating Data

When your rating data is complete, that is the measurements expected from all raters
have been recorded, then the intraclass correlation ICC(2, 1) of equation 5.2.3 can
take its usual and better known form given by,

ICC(2, 1) =
MSS−MSI

MSS + r(MSR−MSI)/n+ (r − 1)MSI + r(m− 1)MSE
, (5.2.8)

where MSS, MSR, MSI and MSE are defined as follows:

� MSS is the mean of squares for subjects, which is calculated by summing the
squared differences (yi··−y)2, and by multiplying the summation by rm/(n−1).
Note that yi·· is the average of all ratings associated with subject i, while y is
the overall average.

MSS =
rm

n− 1

n∑
i=1

(yi·· − y)2 (5.2.9)

� MSR is the mean of squares for raters, calculated by summing the squared
differences (y·j· − y)2, and by multiplying the summation by nm/(r − 1). The
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term y·j· represents the average of all ratings associated with rater j.

MSR =
nm

r − 1

r∑
j=1

(y·j· − y)2. (5.2.10)

� MSI is the mean of squares for the rater-subject interaction, calculated by
summing the squared differences (yij·− yi··− y·j·+ y)2, and by multiplying the
summation by m/[(r − 1)(n − 1)]. The term yij· represents the average of all
ratings associated with subject i and rater j.

MSI =
m

(r − 1)(n− 1)

n∑
i=1

r∑
j=1

(yij· − yi·· − y·j· + y)2. (5.2.11)

� MSE is the mean of squares for errors, calculated by summing the squared
differences (yijk − yij·)2 and by dividing the summation by rn(m− 1).

MSE =
1

rn(m− 1)

n∑
i=1

r∑
j=1

m∑
k=1

(yijk − y)2. (5.2.12)

If your data is based on a single replication experimental design (i.e. only one
measurement is taken on each subject), then the variances due to the error and the
rater-subject interaction can no longer be calculated separately. In this case, only
MSI must be calculated as described above, and be renamed as MSE. Equation 5.2.8
will then become,

ICC(2, 1) =
MSS−MSE

MSS + r(MSR−MSE)/n+ (r − 1)MSE
. (5.2.13)

5.2.2 Intra-Rater Reliability Coefficient

The factorial design can be used for studying both the inter-rater and the
intra-rater reliability. As previously discussed, intra-rater reliability is a measure of
self-consistency for the raters. It represents the raters’ ability to reproduce the same
measurements on similar subjects. Therefore the intra-rater reliability study aims at
investigating the reproducibility of the measurements. This task can be performed
only if the same raters produce two ratings or more for the same subjects. That is,
the notion of replication involving repeated trials plays a pivotal role in the study of
intra-rater reliability.
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5.2. The Intraclass Correlation Coefficients - 129 -

The intra-rater reliability based on model 5.2.1, is by definition the correlation
coefficient between the scores yijk and yijk′ associated with the two trials k and k′,
associated with the same subject i, and the same rater j. It follows from equation
5.2.1 that the intra-rater reliability (denoted by γ) is defined8 as,

γ =
σ2
r + σ2

s + σ2
sr

σ2
r + σ2

s + σ2
sr + σ2

e

. (5.2.14)

Does equation 5.2.14 actually measure raters’ self-consistency? To answer this
question, you should first note that γ would normally vary from 0 to 1, where 0
indicates no intra-rater reliability, and 1 a perfect intra-rater reliability. A high value
for γ is an indication that the variance due to the error factor (σ2

e) is relatively
small compared to the total variance due to the rater, subject, and subject-rater
interaction effects. Since the error variance is due to the combined effect of replication
and experimental error, we can conclude that the variability due to replication is
necessarily small. Therefore the ratings are highly reproducible. If γ is small (i.e. close
to 0) then we can conclude that the combined effect of replication and experimental
error is large. This may be due to a large variation in the repeated measurements (i.e.
poor reproducibility) or a large experimental error or both. We don’t know. What
we know is that the experiment aimed at demonstrating high reproducibility was
inconclusive.

Calculating Intra-Rater Reliability

To compute the intraclass correlation coefficient of equation 5.2.14 from actual
data, I propose once again a method that can handle missing values adapted from
Searle (1997, page 474). The method proposed by Shrout and Fleiss (1979), and
which is based on several means of squares, cannot handle missing values. This special
approach for balanced data, and the general approach for unbalanced data yield the
same ICC when the data is balanced. For illustration purposes only, I will first present
the special approach for balanced data.

SPECIAL METHOD FOR BALANCED DATA

If your data is balanced then the intra-rater reliability coefficient can be calculated
as follows:

ICCa(2, 1) =
rMSR+ nMSS + (rn− r − n)MSI− rnMSE

rMSR+ nMSS + (rn− r − n)MSI + rn(m− 1)MSE
, (5.2.15)

8Note that γ = Corr(yijk, yijk′) = Cov(yijk, yijk′)/
[√

Var(yijk)
√

Var(yijk′)
]
. The assumption of

independence of the factors can be used here to obtain equation 5.2.14
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where r is the number of raters, n the number of subjects, m the number of trials
(or replicates), MSR the mean of squares for raters, MSS the mean of squares for
subjects, MSI the mean of squares for the subject-rater interaction, and MSE the
mean of squares for errors. These different means of squares are calculated as shown
towards the end of section 5.2.1 (after equation 5.2.8).

There is no need to know what this expression would be if there is only one
measurement per rater and per subject. It is because the purpose of this section is to
quantify reproducibility, which can be accomplished only in the context of replication
involving two trials or more per subject.

GENERAL METHOD FOR UNBALANCED DATA

The ICC of equation 5.2.15 is calculated from raw experimental data by replacing
the 4 variance components σ2

s , σ
2
r , σ

2
sr, and σ2

e with their calculated values. The
calculated subject, rater, interaction and error variances are respectively denoted
by σ̂2

s , σ̂
2
r , σ̂

2
sr and σ̂2

e . Therefore the calculated intraclass correlation coefficient for
intra-rater reliability assessment is given by,

ICCa(2, 1) =
σ̂2
r + σ̂2

s + σ̂2
sr

σ̂2
r + σ̂2

s + σ̂2
sr + σ̂2

e

, , (5.2.16)

where the variance components are calculated as shown in equations 5.2.4, 5.2.5,
5.2.6, and 5.2.7. Using Table 5.2 data and the variance components calculated in
example 5.1, you can calculate the intra-rater reliability as,

ICCa(2, 1) =
1, 627.395 + 82.507 + 0

1, 627.395 + 82.507 + 460.897
, (5.2.17)

= 0.788.

It appears that the intra-rater reliability is reasonably high in this case. This is due to
the fact that the error variance is small compared to the other variance components.

5.3 Statistical Inference About the ICC

The primary objective of this section is the present methods that allow you to
quantify the precision of the intraclass correlation coefficient calculated with equa-
tions 5.2.3, and 5.2.16. You will be able to make a statement regarding the magnitude
of the true9 intraclass correlation coefficient using your experimental data. The pro-
cess used to accomplish this task is known as statistical inference. The two inferential

9Recall that equations 5.2.3, or 5.2.16 can only give you an approximated value for the intraclass
correlation based on the specific experimental data you have collected. The “true” ICC would require
far more information about the entire population of subjects, than you can possibly collect.
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