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Intraclass Correlation: A
Measure of Rater Agreement

OBJECTIVE
This chapter presents a general overview of the use of Intraclass Correlation Coefficients for
quantifying the extent of agreement among raters when the ratings are in the form of quanti-
tative measurements. A high-level description of the underlying statistical models is provided
as well as a discussion on the limitations associated with their use. After reading this chap-
ter the practitioner will be able to decide which model is appropriate for the study that was
conducted, and will know the related challenges that must be overcome. This chapter also de-
scribes the Bland-Altman plot, a popular graphical method for analyzing agreement between
two raters. The reader will find an introduction to sample size calculations in this chapter,
and a more detailed treatment of the sample size problem in subsequent chapters. Figure
3.2 represents a flowchart showing how to find the correct intraclass correlation coefficients
based on the way the ratings were gathered and the type of analysis to be done.
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- 48 - Chapter 3: Intraclass Correlation: A Measure of Agreement

3.1 Introduction

In the past few chapters of parts I and II, I presented many techniques for quan-
tifying the extent of agreement among raters. Although some of these techniques
were extended to interval and ratio data, the primary focus has been on nominal and
ordinal data. This chapter as well as the other chapters of Part II, are devoted to the
study of inter-rater reliability for quantitative outcomes whose possible values are
defined on a continuum, as opposed to being a predetermined set of specific values.

Why do we need to care about intraclass correlation when weighted versions
of the chance-corrected measures can be used to handle quantitative outcomes? It
is because the notion of “perfect” agreement associated with two raters assigning
the exact same score to the same subject, does not translate well to quantitative
measurements. Consider for example two electronic devices used to measure the
knee joint laxity on 15 human subjects. Even if both devices are equally reliable,
you would not expect them to produce the exact same quantitative measurement
on the same subjects, since these values belong to a continuum. Likewise, two very
competent raters that measure the height or the weight of the same human subject
will likely produce slightly different numbers regardless of their proficiency level in
the use of the measuring instrument. With agreement no longer referring to an exact
match, the notions of chance agreement and percent agreement evaporate.

The solution to this problem is to use the portion of variation in the data that is
due to subjects, and to compare it to the other portion of that variation due to the
raters. If the rater-induced variation exceeds that of the subjects by a wide margin
then the raters are said to have low inter-rater reliability. Otherwise, the raters are
said to have high inter-rater reliability. This comparison of variance components is
achieved by calculating the ratio of the subject variance component to total variance1,
which is known as the Intraclass Correlation Coefficient (ICC). This approach to
inter-rater reliability will work only if the reliability experiment is designed in such
a way that the different variation components can be separated. You will see in the
next few sections how this task can be accomplished. Several approaches can be
used to design an inter-rater reliability study, depending on the goal aimed at for
the study. In the next section, I will describe a few designs commonly used in the
context of inter-rater reliability analysis.

The ICC approach to inter-rater reliability is based on a sound statistical theory.
Nevertheless, the statistical foundation of this method requires the subjects taking

1Total variance includes the variance components due to raters and that due to experimental
errors. Consequently, large experimental errors or large variations among raters will inevitably lead
to low inter-rater reliability. Therefore, minimizing measurement or experimental errors is crucial to
a successful inter-rater reliability experiment.
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3.2. Statistical Models - 49 -

part of the experiment to have been randomly selected from a larger and hetero-
geneous population of subjects. At times researchers want to quantify inter-rater
reliability when the subject population is homogeneous. With a small subject vari-
ance component to begin with, even a small to moderate rater variance component
will lead to a small ICC, making it impossible to obtain a high ICC even when the
raters agree. To deal with this issue, Finn (1970) proposed a method known by re-
searchers as the within-group inter-rater reliability, and which is discussed in chapter
7.

In most inter-rater reliability projects involving quantitative measurements, the
extent of agreement among raters is evaluated with respect to a single characteris-
tic of interest. For example, the characteristic could be a person’s peak expiratory
flow indicating his ability to breathe out air. The inter-rater reliability experiment
in this case consists of getting several raters to assign a single measurement to each
human subject. However, the field of medical imaging for example requires that the
same subject be measured on multiple characteristics. Likewise, the performance of a
computer system will likely be evaluated on many aspects. The use of multiple char-
acteristics often requires a multivariate approach to inter-rater reliability in order to
provide a global measure of the extent to which the raters agree on all characteristics
of interest.

To address the multivariate problem describe in the previous paragraph, various
authors have proposed multivariate versions of the classical ICC. Shou et al. (2013)
proposed the I2C2 coefficient, while Yue et al. (2015) recommended a more gen-
eralized version of I2C2 known as GICC. These 2 proposals present the advantage
of producing a single global coefficient that adequately summarizes the extent of
agreement among raters in a multivariate setting. The main disadvantage of these
methods is their complexity, and the lack of software packages that implement them.
I propose a simpler multivariate approach to the ICC in section 3.5 that can be
implemented using most standard software packages.

3.2 Statistical Models

Consider the reliability data shown in Table 3.1. That data represents scores that
4 raters assigned to 6 subjects, and could be interpreted in various ways depending
on how it was collected. Here are 4 possible study designs (or data models) that
could have produced Table 1 data:

� Model 1A: Each subject is rated by a different group of raters

According to this model, each row of Table 3.1 is not necessarily associated
with the same set of 4 raters. Although the 4 raters are consistently labeled as
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1, 2, 3, and 4, they could represent different individuals, or different measuring
instruments. One may average this data row-wise to study the subject effect,
but will not be able to average column-wise to obtain the rater effect. It is why
this is often known as a one-factor (or one-way) model, the single factor here
being the subject.

The main implication of this model is that one rater may not have the op-
portunity to score more than one subject. Consequently, this model makes it
impossible to evaluate Intra-rater Reliability , which is a measure of the rater’s
self-consistency. However, the raters under this model still score the same sub-
jects, making it possible to compute Inter-rater reliability.

The main advantage for using this model is that the raters could be located in
different geographic areas, and rate local subjects. There is no need to move
subjects around to allow different groups of raters to rate the same subjects.
This model may also be suitable in situations where subjects are hard to recruit
and the availability of the same group of raters cannot be guaranteed when a
subject is able to participate in the experiment.

Table 3.1: Scores assigned by 4 raters to 6 subjects

Ratera
Subject

1 2 3 4
Average

1 9 2 5 8 6
2 6 1 3 2 3
3 8 4 6 8 6.5
4 7 1 2 6 4
5 10 5 6 9 7.5
6 6 2 4 7 4.75

Average 7.67 2.5 4.33 6.67 5.29

aThis data is taken from Shrout and Fleiss (1979), although I replaced the terms Target and
Judge with Subject and Rater respectively, and added row and column marginal averages.
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� Model 1B: Each rater rates a different group of subjects

If Table 3.1 data were collected according to this design, then the 6 subjects
may differ from rater to rater. That is, each rater scored his own set of subjects,
even though I may have decided to consistently labeled them as 1, 2, 3, 4, 5,
and 6. One may evaluate the rater effect by averaging Table 3.1’s columns. Any
row-wise averaging would be meaningless as such an operation would involve
different subjects as well as different raters. Therefore, the only factor that
can be studied is the rater factor, and this model will later be referred to as a
one-factor or one-way model.

The main implication of this model is that it allows for the evaluation of intra-
rater reliability, and not that of inter-rater reliability. Evaluating inter-rater
reliability always requires different raters to score the same subjects.

� Model 2: The Random Factorial Design

According to this model, each subject is scored by the same group of raters.
Both the subjects and the raters are random samples selected from the respec-
tive populations they represent, hence the naming “random” design. Moreover,
the column and row marginal averages are meaningful, and the effects of sub-
ject and rater factors can be evaluated. It is because both factors (rater and
subject) can be studied that this design is known as a “factorial design”. The
experimental design that produces Table 3.1 data is called a two-way factorial
design.

� Model 3: The Mixed Factorial Design

According to this design, each subject is scored by the same group of raters,
and is also in this regard a factorial design. Unlike Model 2, here only the
group of subjects represents a random sample selected from a larger subject
population, while the group of raters does not represent a random sample.
Because the group of raters that participate in the reliability experiment is not
randomly selected from a larger rater population, these raters only represent
themselves. The resulting inter-rater reliability coefficient can therefore not be
applied to raters beyond those in the experiment. Therefore, the subject effect
is random, while the rater effect is fixed. This combination of random and fixed
effects gave this design the name “Mixed Factorial Design.” When the number
of factors considered is limited to two as is the case for Table 3.1, it is renamed
the “Two-Way Mixed Factorial Design.”
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Each of these models requires a different method for calculating the intraclass
correlation coefficient. Shrout and Fleiss (1979) discussed models 1A (although it was
referred to as model 1), 2, and 3. The same models were also discussed by McGraw
and Wong (1996), who presented methods for computing the intraclass correlation
for each of them. However, these authors did not deal with the important problem
of missing ratings, which is very common in inter-rater reliability experiments. The
missing-rating issue extensively will be extensively discussed in chapters 4, 5 and 6.

When all the conditions required to ensure the validity of ANOVA models are not
met, the nonparametric methods of chapter 7 should be used. These nonparametric
methods were advocated by several authors including Finn (1970), James et al. (1984)
and O’Neill (2017)

3.3 The Bland-Altman Plot

A mainly graphical method often used as alternative to the intraclass correlation
for analyzing inter-rater reliability data was proposed by Bland and Altman (1986).
It combines a graphical approach and a quantitative analysis of the magnitude of
the rating differences. This method can only analyze two raters at a time, and has
become popular over time among researchers, although many of its users are often
unaware of its limitations. In this section, I will present an overview of this method,
and will discuss its merits as well as its limitations.

Suppose that we want to study the extent of agreement between the two raters la-
beled as 3 and 4 using Table 3.1’s ratings. The Bland-Altman method is implemented
as follows:

• The first step consists of creating a scatterplot that depicts the differences in
ratings between raters 4 and 3 as a function of their averages. Table 3.2 shows
the ratings being analyzed as well as the two series of averages and differences
used to create the scatterplot of Figure 3.1.

• The next step is to display on the scatterplot created in the previous step, the
two “limits of agreement”. The dotted line at the bottom is the lower limit of
agreement and the one at the top represents the upper limit of agreement. The
lower limit of agreement is -1.169 while the upper limit of agreement is 5.836.
This indicates that you can expect the difference between raters 4 and 3 to be
as high as 3.763 and as low as 0.904. Depending on the application at hand,
such a gap may be acceptable or may be too wide. Ultimately, this gap will help
the researcher decide whether the extent of agreement between the two raters
4 and 3 is acceptable or not. If d is the average difference and s the standard
deviation of the differences, then the lower limit of agreement is d− 2s/n and
the upper limit of agreement d+ 2s/n.
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The two steps described above summarize what is known as the Bland-Altman
method. It is intuitive and fairly straightforward to apply. Bland and Altman (1986)
indicated that their plot can help study the relationship between the rating pairwise
differences and the associated pairwise means, which by the way are used as surro-
gates for the true rating associated with the subject. The study of this relationship
is one way of verifying whether the differences are independent or not. These dif-
ferences must be approximately independent for the interpretation of the lower and
upper limits of agreement to be valid. If these differences have for example a tendency
to decrease as the averages increase, or if this relationship shows any other specific
trend, this may an indication of a lack of independence. Transforming the initial
ratings using the logarithm function for example may be the remedy for obtaining
the independence needed.

Some researchers believe that the Bland-Altman method is the only realistic way
of dealing with inter-rater agreement. That is not true. We will see in the next few
chapters why the intraclass correlation is not only appropriate, but is often the better
approach.

Table 3.2: Scores assigned by Raters 3 & 4 to 6 subjects

Subject Rater #3 Rater #4 Mean Rating Differencea

1 5 8 6.5 3
2 3 2 2.5 -1
3 6 8 7 2
4 2 6 4 4
5 6 9 7.5 3
6 4 7 5.5 3

aDifference = (Rater 4) - (Rater 3)

ISSUES WITH THE BLAND-ALTMAN METHOD

Part of the popularity of the Bland-Altman method stems from its graphical
nature. You can look at the graph and see right in front of you the differences
between the ratings obtained from the two raters you are analyzing. A simple visual
exploration may even allow you to form an opinion about the extent to which they
agree. Using the two limits of agreement helps you figure out how large the difference
should be before it can be considered too large. Here are a few assumptions the
Bland-Altman method is based upon, and which are often not satisfied:
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Figure 3.1: Rating Differences as a function of rating means

• Bland and Altman (1986, page 4), indicate that the “... differences are likely
to follow a Normal distribution because we have removed a lot of the variation
between subjects and are left with the measurement error.” The real problem
with this assumption is that it is untrue if there is a subject-rater interaction.
This is often the case when the rating is affected by the magnitude of the
“true” score associated with the subjects. The subject-rater interaction does
not preclude the differences from following the Normal distribution. However,
the differences will be correlated and their actual standard deviation would be
higher than the estimate s recommended by Bland and Altman (1986).

If the standard deviation of the differences is underestimated then the Bland-
Altman method may produce a false sense of agreement. When subjects and
raters interact, inter-rater reliability is better analyzed with the intraclass cor-
relation that relies on a formal modeling of the interaction effect.

• Another benefit of the Bland-Altman plot lies in the analysis of the the rela-
tionship between the differences and the average ratings. This relationship is
important primarily because it allows you to see whether raters and subjects
interact provided the average is a good surrogate for the subject’s true score.
The problem here is that the average is known to be close to the true value
only if there is little variation in the ratings. That is if the raters are known to
be in agreement, an assumption we cannot make since that very agreement is
precisely what we are studying.

• The Bland-Altman method is meant for pairwise analyses only. It may not
allow you to obtain a global picture of the extent of agreement among multiple
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raters. When the number of raters is moderately large such as 8, the number
of pairwise analyses becomes as large as 28, which can be problematic.

I would recommend using the Bland-Altman plot mainly as an exploratory tech-
nique. It allows the researcher to have a first glimpse into the inter-rater reliabil-
ity results. Ultimately, an intraclass correlation based on the appropriate statistical
model should be calculated.

3.4 Sample Size Calculations

When designing an inter-rater (or intra-rater) reliability study, the researcher
first needs to determine how many subjects and how many raters must be part of
the experiment. Sometimes, there is also a need to determine the number of trials also
known as the number of replicates if replication is desired. Note that replication is
about a rater taking more than one measurement from the same subject. Each of the
next three chapters has a section on sample size calculation. These sections provide
detailed procedures showing how the number of raters, the number of subjects and
the number of trials can be determined depending on which data model is chosen.

Traditionally power calculation as done in statistics is based on the test of hypoth-
esis involving population means, and consists of finding the optimal sample size that
yields the desired power2 for the statistical test. This procedure generally requires
the researcher to specify the effect size (or the detectable difference)3, the statistical
significance (also known as α or alpha), and the desired power. The approach pro-
posed here for the ICC is slightly different. It requires the researcher to specify the
desired confidence interval length (this is equivalent to specifying the effect size), the
confidence level associated with the confidence interval (this often takes the values
90%, 95%, or 99%), and the anticipated ICC value. The anticipated ICC value may
be known from prior studies or from a pilot experiment. If such a value is unknown
then I will recommend a conservative approach based on the anticipated ICC value
that will yield the largest confidence interval length.

Our investigation has revealed that you need about 5 raters to optimize your
inter-rater reliability coefficient for a given total number of ratings. The total num-
ber of ratings is the product of the number of raters by the number of subjects
(assuming one trial per rater and per subject). Therefore, if your experiment is going
to generate 140 ratings for example, then it would be more efficient to have 5 raters

2The power of a statistical test represents the probability for that test to reject the “null” hy-
pothesis when it is false. This “null” hypothesis could be the equality of two population means, or
the equality of a population mean to a hypothetical value.

3The detectable difference is the smallest difference between the two population means under
comparison, which will cause the null hypothesis to be rejected.
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and 28 subjects instead of having 10 raters and 14 subjects. A design is said to be
more efficient in this context when it yields the smaller confidence interval length.
Consequently increasing the number of subjects is more rewarding than increasing
the number of raters beyond 5. However, if recruiting raters is cheaper than recruit-
ing subjects then you may have to increase the number of raters beyond 5 and reduce
the number of subjects.

3.5 Multivariate Analysis

The multivariate ICC proposed in the literature is based essentially on a more
general version of what I previously referred to as Model 1A in section 3.2. These
broad and complex statistical models attempt to describe the relationship between
a series of tables such as Table 3.1 associated with the different characteristics being
studied. These methods can be used if the researcher is willing to put in the efforts
necessary to successfully implement them. A downside of these methods other than
their complexity and the unavailability of software packages, is the difficulty extend-
ing them to the other alternative statistical models that may be more appropriate
for our data. What else can we do?

Table 3.3 displays 4 measurements generated for each of 10 patients by a software
that analyzed 4 of the main coronary vessel areas. It is often of interest to compare
different software products and to assess the extent to which they agree on these
measurements. Another dataset similar to Table 3.3 could be produced for a second
software product so that an inter-rater reliability can be calculated between these 2
software products. A key question to be asked is how can one produce a single global
intraclass correlation coefficient that summarizes the extent of agrement between
2 software products with respect to all 10 patients and 4 characteristics? There 3
natural options you can think of:

(i) You can compute a separate ICC for each of the 4 variables GLOBAL, LAD,
LCx, and RCA before averaging them to obtain a single general agreement
coefficient. However, this average is not and cannot be interpreted in anyway
as an intraclass correlation coefficient. Note that the ICC is the proportion of
total variance in the data that is due the subjects. Since the ICC is obtained
as the ratio of subject variance to total variance, high-variance characteristics
are expected to play a dominant role in this assessment. Therefore, averaging 4
ICC coefficients will put too much emphasis on low-variance characteristics by
giving them the same weight as the high-variance characteristics. Consequently,
the mean ICC could potentially lead to a dramatic understatement of the global
extent of agreement among raters. A practical example of this fact is discussed
in chapter 4.
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(ii) A second option would be to compute for each individual patient a summary
score by averaging the 4 associated measurements. This summary score could
then be used for computing the global ICC coefficient. In my opinion this is
likely one of the worse options to consider, and I strongly encourage researchers
to avoid it at all costs. If there is a tendency for some variables take high
values than others, averaging all of the variables at the subject level may result
in all subjects having similar mean values. Any subject variation observed on
each variable will vanish. This will inevitable lead to a near zero ICC, given
the importance of subject variation in computing the intraclass correlation.
Concrete examples that illustrate this issue are shown in chapter 4.

(iii) You may use one of the multivariate approaches advocated by Shou et al. (2013)
or Yue et al. (2015). These options are available to researchers. As previously
mentioned, implementing then requires some efforts.

(iv) My preferred option is to compute a composite score optimally computed so as
to capture most of the variation in the data. Unlike the mean score of option
(ii), which assign equal weight to all variate, I recommend computing what is
known in the statistical literature as the “Principal Component.” In a nutshell,
the principal component is a linear combination of the variables of interest,
where the variables with the most variation receive the largest weights. The
statistical techniques require for obtaining the principal component are imple-
mented in almost all known statistical packages. I will nevertheless describe
later in this section the mechanics for obtaining this principal component.

Table 3.3: Coronary artery disease diagnosis measures taken
from the global and main coronary vessel regional levelsa

Patient GLOBAL LAD LCX RCA

1 1.753 1.813 1.701 1.733
2 0.801 0.721 0.894 0.891
3 1.563 1.469 1.467 2.012
4 0.791 0.824 0.740 0.790
5 0.798 0.830 0.730 0.885
6 0.965 1.095 0.911 0.759
7 1.460 1.356 1.503 1.787
8 1.429 1.478 1.381 1.381
9 1.201 1.196 1.159 1.221
10 0.767 0.805 0.702 0.732

aLAD, LCx, and RCA are acronyms associated with the coronary vessel
areas analyzed
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3.5.1 The Principal Component

Consider Table 3.3 data and let us see step by step how to obtain the compos-
ite score using the principal component approach. The composite score is essentially
a fifth variable that I will add to Table 3.3, which like the other 4 variables assign one
value to each patient. The ultimate goal is for “Composite” to be used as a surrogate
to the other 4 variables while capturing most of the variation among subjects shown
by the original data. This technique allows us to reduce a 4-dimensional problem to
a much simpler one-dimensional problem. Let COMP be the composite score and
COMPi the composite score associated with a specific patient i. The link between
COMP and the other 4 variables can be described as follows:

COMPi = αg ×GLOBALi + αl × LADi + αx × LCXi + αr × RCAi, (3.5.1)

where GLOBALi for example is the value of the GLOBAL variable associated with
patient i. The main question is how to determine the 4 coefficients αg, αl, αx, and
αr associated with the 4 factors. These 4 coefficients are also known in the literature
as the factor loadings, and are calculated in such a way that they will maximize the
variance of COMP in order to capture most of the variation in the dataset. The sum
of the squared loadings is also required to be 1. The sole objective of this requirement
is to ensure they are unique. For the sake of simplicity, let F denote the list of all 4
factors under investigation. That is, F = {G,L,X,R} where the letters respectively
represent the factors GLOBAL, LAD, LCX, and RCA.

Most researchers do not need to have an in-depth understanding of the complex
mathematics and matrix algebra that underly the derivation of the principal com-
ponent. Therefore, I present here what I consider to be the essentials. First, let me
introduce a few concepts:

• The Vector. Let ααα = (αg, αl, αx, αr) be the list of coefficients we are attempting
to calculate. Such a list is often referred to as a vector. Here, ααα is a 4-element
vector. Using Table 3.3 data, most statistical packages can produce 4 eigenvec-
tors4 similar to ααα and 4 associated eigenvalues often denoted by λ1, λ2, λ3 and
λ4. The eigenvector associated with the highest of the 4 eigenvalues contains
the 4 coefficients or factor loadings we are looking for.

• The Covariance Matrix. It is common practice in statistical science to describe
the statistical properties of a dataset such as that of Table 3.3 using what

4I will define the related notions of eigenvector and eigenvalue later in this section.
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known as the covariance matrix, the variance matrix, or the variance-covariance
matrix, and given by:

MMM =

⎛⎜⎜⎝
σ2
gσ
2
gσ
2
g σgl σgx σgr

σlg σ2
lσ
2
lσ
2
l σlx σlr

σxg σxl σ2
xσ
2
xσ
2
x σxr

σrg σrl σrx σ2
rσ
2
rσ
2
r

⎞⎟⎟⎠ , (3.5.2)

where σ2
g is the variance of the GLOBAL variable, and σlg the covariance

between the LAD and GLOBAL variables. The diagonal of the covariance ma-
trix contains each factor’s variance, and the off-diagonal elements describe how
these factors are related.

To understand the importance of this covariance matrix, remember that the
loadings must be calculated so as to maximize the variance of COMP. This
variance can be calculated from equation 3.5.1 as follows:

var(COMP ) =
∑∑
(k,l)∈F

αkαlσkl. (3.5.3)

It follows from equation 3.5.3 that all elements σkl of the covariance matrix MMM
as well as all factor loadings αkl of the composite score COMP are used in the
calculation of the composite score variance.

Before introducing the notions of eigenvector and eigenvalue, it is essential to
note that the variance of the composite score shown in equation 3.5.3 can be
rewritten as follows5:

var(COMP) =
∑
k∈F

αk

(∑
l∈F

αlσkl

)
. (3.5.4)

• Eigenvectors and eigenvalues. The notions of eigenvalue and eigenvector are
so intimately linked that one cannot mention one of them without mentioning
the other. Moreover, these 2 notions are always associated with a particular
matrix. In our case, it is the covariance matrix MMM. A 4-element vector ααα whose
squared coefficients sum 1 is an eigenvector of matrix MMM , if any of its elements
αk is linked to the other elements as follows:∑

l∈F
αlσkl = λαk, (3.5.5)

for some number λ, which is the associated eigenvalue. You want to know
why we need eigenvectors and eigenvalues? Look at equation 3.5.4 and you

5Note that the coefficients αk (for k = g, l, x, r) are still unknown to us and remain our focus.
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will realize that if you have an eigenvector then term in parentheses would be
replaced with λαk, and since the squared coefficients sum to 1, the variance of
the composite score will be var(COMP) = λ. The resulting COMP variable
using the eigenvector’s elements as coefficients is called a principal component.

One can prove mathematically that a total of 4 eigenvectors ααα1, ααα2, ααα3, and ααα4

and 4 associated eigenvalues λ1 > λ2, λ3 > λ4 can be derived. This will lead to
4 different principal components, the variance of which equals the value of the
associated eigenvalue. In reality, only the first principal component associated
with the highest eigenvalue λ1 will be retained as our composite score COMP.

• Data Total Variation. The sum of the 4 diagonal elements of this covariance
represents the total variation in the dataset and is also known by its mathe-
matical name of “trace of matrix MMM” and denoted by Trace(MMM) That is,

Total Variation = Trace(MMM) = σ2
g + σ2

l + σ2
x + σ2

r. (3.5.6)

What is interesting here is that the total variance is also equal to the sum
of all 4 eigenvalues λ1 + λ2 + λ3 + λ4. Consequently, the proportion of the
total variation that is explained by our composite score (i.e. the first principal
component) is λ1/(λ1 + λ2 + λ3 + λ4).

Example 3.1

To illustrate the principal component analysis, let us calculate the composite scores
of the 10 patients of Table 3.3. My objective is to add an extra column to Table 3.3
that assigns a single summary number to each patient that will replace the previous 4
scores in further analysis.

Table 3.4 shows the 4 eigenvectors and 4 eigenvalues associated with Table 3.3 data.
There a few interesting things that can be observed from this Table. It follows from the
last 2 columns of this table that the first eigenvalue of 0.6118 represents about 94.8%
of the total sum of all eigenvalues 0.6451. This eigenvalue is associated with the first
eigenvector ααα1 shown in the first column of the table. Consequently, the 4 numbers in
the first column are precisely the 4 coefficients you need to construct the composite
score (or the first principal component), shown in Table 3.5.
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Table 3.4: Eigenvectors and eigenvalues associated with 3.3 data

Eigenvectors (or factor loadings) Eigenvaluesa

Factor ααα1 ααα2 ααα3 ααα2 λλλ % var

GLOBAL 0.4768 0.2225 0.0554 0.8486 0.6118 94.8%
LAD 0.4470 0.6123 0.4787 -0.4429 0.0296 4.6%
LCX 0.4692 0.1355 -0.8377 -0.2445 0.0037 0.6%
LCX 0.5939 -0.7465 0.2571 -0.1548 0.0001 0.0%

SSCb 1 1 1 1 Total 0.6451 100.0%

aλλλ is the vector of eigenvalues and “% var” is the proportion of total variation
explained by each eigenvalue.

bSum of Squared Coefficients

Table 3.5: Table 3.3 data along with the patients’ composite scores.

Patient GLOBAL LAD LCX RCA COMPa

1 1.753 1.813 1.701 1.733 3.474
2 0.801 0.721 0.894 0.891 1.653
3 1.563 1.469 1.467 2.012 3.285
4 0.791 0.824 0.740 0.790 1.562
5 0.798 0.830 0.730 0.885 1.620
6 0.965 1.095 0.911 0.759 1.828
7 1.460 1.356 1.503 1.787 3.069
8 1.429 1.478 1.381 1.381 2.810
9 1.201 1.196 1.159 1.221 2.376
10 0.767 0.805 0.702 0.732 1.490

aThis is the first principal component, an average of the 4 factors GLOBAL, LAD,
LCX, and RCA, weighted by the coefficients of the first eigenvector ααα1

The composite score of Table 3.5 is calculated as follows:

COMPOSITE = 0.4768×GLOBAL+0.4470×LAD+0.4692×LCX+0.5939×RCA,

where the coefficients come from the first column of Table 3.4. The composite score
associated with patient 1 for example is calculated as follows:

3.474 = 0.4768× 1.753 + 0.4470× 1.813 + 0.4692× 1.701 + 0.5939× 1.733.
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Since the first eigenvalue represents the variance of the first principal components, one

can conclude that our composite score explains about 94.8% of the total variation in

the data. You be quite confident in its ability to summarize your entire dataset in

further analysis.

3.5.2 The Multivariate ICC

In section 3.5.1, I recommended that the first principal component be used as
composite score for calculating the multivariate intraclass correlation coefficient.
This composite score is expected to be used in a univariate approach along with
the univariate models to be discussed in chapters 4, 5 and 6. The composite score
summarizes the original variables, captures most of the variation in the dataset and
incorporates its correlation structure. Although this approach will generally work
well, there are a few important issues the researcher must know when using this
approach.

Since the composite score is based on the first principal component, it is expected
to explain the highest proportion of total variance of all principal components. How-
ever, in some instances even that highest proportion of total variance may not be
sufficiently large for the composite score to have an adequate representation of total
variation in the dataset. For example, if that proportion is 50% then half of the total
variation will not be reflected in the composite score. Overlooking such an issue could
lead to an overstatement of the extent of agreement among raters. With less variation
comes an artificially higher agreement. In this case, it would be more effective to use
not one, but 2 or 3 principal component scores and a weighted average as discussed
in section 9.4 and chapter 9.

When a composite score is calculated as in example 3.1, can it translate any
agreement among raters very well? The multivariate ICC will be an aggregate that
is expected to summarize the extent of agreement among raters not on one factor,
but on 2 factors or more. However, the raters may agree well on one factor while
severely disagreeing on another one. In this situation, what story would we want
the multivariate ICC to tell us? The ICC as a measure of agreement is far more
reliable when applied to an heterogeneous population of subjects, because the subject
variance is compared to the rater variance. It is when the subject variance exceeds the
rater variance by a wide margin that one concludes that the raters agree. Therefore,
in a multivariate setting the raters’ agreement at the level of individual factors will
translate well in a composite score if this score carries most of subject variation
shown in the data.

If the number of factors under investigation is very large, adequately summarizing
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them with a single composite score becomes a difficult task. This situation may
require a more refined analysis. It may be necessary to retain the first 2 principal
components, and to quantify the extent of agreement separately for these 2 composite
scores. I suggest that you also compute the correlation coefficients between each of
the 2 composite scores and the original variables. The highest correlation coefficients
will tell you what factors are summarized by each composite score.

Composite scores must be built based on factors using the same units of mea-
surements. If the original factors have different units of measurements, then it will be
necessary to standardize all of them. This transformation is essential for obtaining
an adequate composite score. If one factor is expressed in the millions while an-
other factors is expressed in the hundreds, then the data variation will be artificially
dominated by the factor measured in millions giving it an unduly high influence in
the construction of the composite score. To be “fair” to all factors, they must be
standardized, striping them of any unit of measurement they may have.

3.6 Concluding Remarks

Although practical constraints often dictate the statistical model to be used,
researchers must at times decide which statistical best fits their analytic goals. This
is generally the case when the researcher is involved in the study at the design
stage. The question then becomes which model should one pick? The answer to this
question depends on whether the main focus of your investigation is on the inter-rater
reliability, on the intra-rater reliability or on both.

As previously discussed, models 1A and 1B are limited with respect to the type of
ICC statistic they can produce. Model 1A allows for the calculation of inter-rater and
not intra-rater reliability. Model 1B does the opposite. It allows for the calculation of
intra-rater and not inter-rater reliability. Consequently, if computing both the inter-
rater and the intra-rater reliability is among your study objectives then both models
must be rejected in favor of models 2 and 3.

For the purpose of optimizing the inter-rater reliability assessment, I recommend
the use of models 2 or 3 if possible as opposed to model 1A. The only reason model
1A should ever be considered is if getting the same group of raters to rate all subjects
is challenging. In this case, only under model 1A will you have the luxury to assign
a different group of raters to different subjects and still be able to compute inter-
rater reliability. However, the use of a large number of different groups of raters
will increase the experimental error, making it more difficult to obtain a high inter-
rater reliability coefficient. Under models 2 and 3, the same group of raters must
rate all subjects. However, if the group of raters is assumed to have been randomly
selected from a larger group of raters it represents, then the rater effect is a random
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variable and only model 2 can be used. However, if the raters taking part of the
inter-rater reliability experiment are not seen as coming from a larger group of raters
representing the primary target of the investigation, then you will need model 3. You
will be penalized by using model 2 as opposed to model 3 in the latter situation. For,
the rater variance calculated under model 2 is expected to have a negative impact
on the inter-rater reliability coefficient.

For the purpose of optimizing intra-rater reliability, I still recommend the use
of models 2 or 3 whenever possible. You may nevertheless use the simple model
1B which does not require all raters to rate the same group of subjects. A major
downside of the intra-rater reliability coefficient under model 1B is its vulnerability
to a diverse subject sample. The approach I recommend is the use of either model
2 or model 3 depending on whether the participating raters are seen as representing
a larger subject universe or not. However, using model 2 is now more advantageous
than using model 3. This stems from the fact that under model 2, the within-rater
variation looks smaller when compared to the combined variation due to raters and
subjects than when compared to subject variation alone. All these issues and many
more are further discussed in-depth in the next few chapters.

Methods for calculating the optimal number of subjects and raters under the var-
ious models will be presented in the respective chapters. I will demonstrate among
other things that for a fixed number of ratings per rater, you need no more than 4, 5,
or 6 trials to obtain the most accurate intra-rater reliability coefficient under models
2 and 3. That is if a rater must produce 40 ratings, it would be more effective to
use 8 subjects and 5 trials rather than 20 subjects and 2 trials. Also addressed in
chapter 4, is the important issue of multivariate analysis where each rater rates the
subjects on several variables and not just on a single variable as is often the case. For
this situation, I recommend using the data reduction technique of principal compo-
nent analysis. The first principal component associated with the original multivariate
dataset of ratings is to be used as a composite score. This composite score coupled
with our model of choice will lead us to the desired intraclass correlation coefficient.

You may want to know about another agreement statistic for quantitative ratings
occasionally mentioned in the literature is Lin’s Concordance Correlation Coefficient
proposed by Lin (1989). Although this coefficient is an improvement over the classical
Pearson’s6, it still cannot properly handle ratings with more complex data structures
such as those described by the models studied in the next few chapters. Consequently,
this coefficient is not discussed in this book.

Figure 3.2 represents a decision tree showing which equations or subsections in

6The classical Pearson’s correlation coefficient quantifies the extent to which series of ratings
from 2 raters are linked by a linear relation of any type. Lin’s coefficient of concordance quantifies
the extent to which the 2 series of ratings are identical.
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the subsequent chapters should be used to compute the correct agreement coefficient
and associated p-values and confidence intervals, depending on the model dictated by
your study design. The numbering of these equations (or subsections) is descriptive,
and the first digit refers to the chapter number, the second digit to the section within
the chapter, and the third number to a specific equation or subsection.
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Figure 3.2: Choosing the Correct Intraclass Correlation Coefficient
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