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Agreement Coefficients and
Statistical Inference

OBJECTIVE
This chapter describes several approaches for evaluating the precision associated with the
inter-rater reliability coefficients of the past few chapters. Although several factors ranging
from the misreporting of ratings to deliberate misstatements by some raters, could affect
the precision of Kappa, AC1 or any other agreement coefficient, the focus is placed on the
quantification of sampling errors. These errors stem from the discrepancy between the pool of
subjects we want our findings to apply to (i.e. the target subject population), and the often
smaller group of subjects that actually participated in the inter-rater reliability experiment
(i.e. the subject sample). The sampling error is measured in this chapter by the variance of
the inter-rater reliability coefficient. The concept of variance will be rigorously defined, and
associated computation methods described. Numerous practical examples are presented to
illustrate the use of these precision measures.
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6.1. Introduction - 171 -

Without theory, experience has no meaning, · · · Without theory, one has
no questions to ask. Hence without theory, there is no learning.

- Edwards Deming (1900-1993) -

6.1 Introduction

While the past few chapters were primarily devoted to computing various agree-
ment coefficients, the present one aims at exploring what can realistically be done
with these numbers. What story do they tell? Can we trust them? If yes, to what
extent? In this section, I will provide a more detailed description of the problem at
hand, the challenge it poses and how to go about it. Subsequent sections deal with
the details of the recommended solutions.

6.1.1 The Problem

Tables 6.1 and 6.2 are two representations of a hypothetical rating dataset
that Conger (1980) used as examples to illustrate the Kappa coefficient. The ratings
are those of 4 raters R1, R2, R3, and R4 each of whom classified 10 subjects into
one of 3 possible categories labelled as a, b, and c. Applied to this data, Fleiss’ gen-
eralized Kappa (see equation 3.4.3 of chapter 3) yields an inter-rater reliability of
κ̂f = 0.247. With the number-crunching phase complete, the next step is to uncover
the story these numbers are telling about the research problem being investigated.
The statistics must be interpreted and the findings presented in the form of action-
able information. To interpret the meaning of an agreement coefficient of 0.247 and
to understand its real value, the researcher needs to answer some of the following
fundamental questions:

• Is 0.247 a valid number? Does it quantify the extent to which the ratings
are reproducible? Can the notion of “extent of agreement among raters” be
framed with rigor for researchers to have a common understanding of its most
important aspects?

• Can we demonstrate the validity of an observed sample-based agreement coef-
ficient by measuring how close it is to a theoretical construct representing the
“extent of agreement among raters?”

• A Kappa coefficient of 0.247 is based on a single sample of 10 subjects and 4
raters. Do these 10 participating subjects constitute a large enough sample to
prove the reliability of a newly-developed classification system? If Fleiss’generalized
Kappa coefficient indeed measures what it is supposed to measure then how
accurate is its calculated value of 0.247? Moreover, are the 4 raters in this study
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- 172 - Chapter 6: Agreement Coefficients & Statistical Inference

the only ones to use the classification system? How would a different group of
raters affect inter-rater reliability?

Table 6.1: Categorization of 10
subjects into 3 groups {a, b, c}

Raters
Subjects

R1 R2 R3 R4

1 a a a c
2 a a b c
3 a a b c
4 a a c c
5 a b a a
6 b a a a
7 b b b b
8 b c b b
9 c c b b
10 c c c c

Table 6.2: Distribution of 4 Raters by
Subject and Category

Categories Total
Subjects

a b c Raters

1 3 0 1 4
2 2 1 1 4
3 2 1 1 4
4 2 0 2 4
5 3 1 0 4
6 3 1 0 4
7 0 4 0 4
8 0 3 1 4
9 0 2 2 4
10 0 0 4 4

Asking those questions leads you straight to the field of inferential methods. These
methods allow a researcher to use information gathered from the observed portion
of the subject universe of interest, and to project findings to the whole universe
(including its unobserved portion). Several inferential methods ranging from crude
guesswork to the more sophisticated mathematical modeling techniques have been
used to tackle real-world problems. The focus in this chapter will be on the methods
of statistical inference, which rely on the agreement coefficient’s sampling distribution
as a gateway to the unexplored universe of all subjects of interest that could not be
reached during the inter-rater reliability experiment.

Several authors have stressed out the need to have a sound statistical base for
studying inter-rater reliability problems. For example Kraemer (1979), or Kraemer
et al. (2002) emphasize the need to use Kappa coefficients to estimate meaningful
population characteristics. Likewise, Berry and Mielke Jr. (1988) mentioned the need
for every measure of agreement to have a statistical base allowing for the implementa-
tion of significance tests. The analysis of inter-rater reliability data has long suffered
from the absence of a comprehensive framework for statistical inference since the
early works of Scott (1955) and Cohen (1960). This problem stems from the initial
and modest goal the pioneers set to confine agreement coefficients to a mere descrip-
tive role. Cohen (1960) saw Kappa as a summary statistic that aggregates rating
data into a measure of the extent of agreement among observers who participated
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in the reliability study. Variances and standard errors proposed by various authors
approximate the variation of agreement coefficients with respect to hypothetical and
often unspecified sampling distributions. But without a comprehensive framework for
statistical inference, standard errors are difficult to interpret, and hypothesis testing
or comparison between different agreement coefficients difficult to implement.

6.1.2 The Challenge and How to Go About It

First and foremost, I like to start by making a clear distinction between
the abstract mathematical expression that shows the way to compute an agreement
coefficient, the concrete value it produces when actual ratings are applied, and the
ideal coefficient you could have computed if you knew everything about all subjects
and raters of interest1 (including those that cannot participate in the inter-rater ex-
periment). I will use the terms “Abstract,” “Concrete” and “Theoretical” agreement
coefficients respectively to make that distinction. The concrete agreement coefficient
is a static value such as 0.68, which is the result of blending an abstract coefficient
with one specific set of ratings. The abstract coefficient on the other hand can be
seen as a procedure, which could lead to one concrete value or the other depending
on the set of actual ratings you feed it with. The theoretical agreement coefficient
too is a static value just like the concrete coefficient, although the latter is the exper-
imental number we always get, while the former is the unknown and ideal number
that we can only dream about. In the jargon of mathematical statistics, the abstract
agreement coefficient would be referred to as the estimator, the concrete coefficient as
the estimate, and the theoretical coefficient as the estimand (or the parameter). An
estimand will often be denoted by κ, its estimator will be κ̂ (the hat indicating that
it is an approximation), and a particular estimate would be labeled as ̂̂κ (the double
hat indicating that a specific set of ratings was applied to the abstract coefficient
to obtain a concrete numeric value for the coefficient). A hypothetical value for the
true parameter κ will often be denote by κ0 (the subscript 0 could be replaced with
another subscript such as 1, 2, · · · .

The abstract agreement coefficient does not have a specific value that identifies it.
Instead, it does have a “sampling distribution” that tells you how often it is expected
to exceed any given value or magnitude you can think of. This sampling distribution
plays a pivotal role in evaluating the precision of the agreement coefficient, inter-
preting its magnitude and planning for future studies. Unless you can find a way to
obtain this sampling distribution, it is near impossible to address any of the ques-
tions presented in section 6.1.1. Without the sampling distribution, you would be
limited to a mere contemplation of a concrete coefficient value, with no possibility
to properly interpret it or gain further insight into the quality of our numbers.

1In the subsequent sections of this chapter I will need to define more formally what it means to
know everything about subjects and raters of interest.
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Obtaining the sampling distribution associated with a particular (abstract) agree-
ment coefficient of interest is the key challenge that must be overcome. It is only with
the sampling distribution that you can link your concrete agreement coefficient and
to the “true” theoretical agreement coefficient it estimates and be able to ascertain
its validity. I now want to give you a heads-up on how it works. The sampling dis-
tribution we will obtain is that of the quantity Z = (κ̂ − κ)/SE(κ̂), which is often
referred to as the Z-score and represents the difference between the estimator and
the estimand, standardized by the standard error2 of the estimator. Although the
estimand κ is always unknown, statistical theory still makes it possible to know the
sampling distribution of the Z score. Suppose we want to know whether the “true”
and unknown coefficient κ exceeds a pre-defined threshold such as κ0 = 0.70. You
sure do not have the true coefficient κ. All you have is its surrogate ̂̂κ (the concrete
agreement coefficient). How do we use the Z score’s sampling distribution to answer
this question? Consider the following two possibilities:

• If actual ratings lead to a concrete agreement coefficient (or an estimate) ̂̂κ =
0.65, then you do not have any data-based evidence that can support your
claim that the estimand κ exceeds 0.70. Note that 0.65 would be your best
guess of the magnitude of the estimand.

• Suppose that ̂̂κ = 0.75, which clearly exceeds the predefined threshold κ0 =
0.70. The trouble is that the estimate ̂̂κ is always subject to a statistical error,
which may artificially inflate or deflate its magnitude to some extent. Hence
the following question: “Can the difference 0.75 − 0.70 = 0.05 be solely due
to the statistical error3?” Or perhaps this statistical error is too small to be
able to account for this difference4. You can get around this difficulty by first
letting the “true” agreement coefficient take the hypothetical κ0 = 0.70. This
assumption will allow you to fully specify the sampling distribution of the
Z score (I show later in the chapter how). If the likelihood for the Z score to
exceed this difference is very small (“small in this context typically means below
0.05) then one may conclude that the difference D is relatively large despite it
being normalized. Consequently the statistical error alone cannot explain the
observed difference of 0.05. The only other contributing factor in this difference
is the “true” agreement coefficient κ being greater than the hypothetical value
κ0 = 0.70.

Because the standard error of the abstract agreement coefficient plays a key role
in statistical inference as discussed in the previous paragraph, a large portion of

2The standard error SE(κ̂) of the estimator is the statistical measure that tells us how far you
would expected the agreement coefficient to stray away from its average value.

3The statistical error is generally quantified by the standard error of the agreement coefficient
estimate. I will show in subsequent sections how the standard error can be calculated

4One may see right here why the ratio D = (̂̂κ− κ0)/SE(κ̂) is essential for addressing this issue.
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6.1. Introduction - 175 -

this chapter is devoted to showing how it can be calculated for various agreement
coefficients. Now, I like to further clarify the ultimate goal this chapter aims at. I
want to first describe two broad objectives that are often of interest to researchers.
The first of these two objectives is out of the scope of this book, while the second
will be the main focus.

• The researcher sometimes wants to understand the process by which raters
assign subjects to categories. One may want to know what factors affect the
classification and to what degree. Here, no particular group of subjects and
no particular group of raters is of interest. The only thing that matters is the
scoring process. Each individual’s score is seen as a sample5 from the larger set
of all possible scores that can be assigned to any particular subject. During a
given reliability experiment, each rater may have to provide several scores (or
score samples) for different subjects. The score in this context is analyzed in
its abstract form with no reference to a particular group of subjects and raters.
Although the number of different scores that a rater can assign to a subject (i.e.
the size of the population of scores) may be finite, the fact that the analysis does
not target any specific group of subjects nor any particular group of raters led
statisticians to refer to this approach as “infinite population inference”. Infinity
for all practical purposes simply means no reference is made to a specific group
of subjects or raters, therefore to the number of samples that can be generated.
Agresti (1992) recommends this inferential approach that also uses a theoretical
statistical model as a way to study the relationship between raters’ scores and
the factors affecting them. These techniques represent a particular form of
statistical inference, but are out of the scope of this book. Readers interested
in this problem may also want to look at Shoukri (2010) or von Eye and Mun
(2006)

• The framework of inference developed in this chapter assumes that the re-
searcher has a target group of subjects and a target group of raters that are of
interest. These two target groups are often larger than what the researcher can
afford to include in a reliability experiment. A psychiatrist at a hospital may
want the reliability study to only target his group of patients and the group of
raters who may be called upon to use a newly-developed diagnosis procedure.
If the group of patients is small, the researcher may conduct a census6 of the
patient population, in which case there will be no need for statistical inference
since the statistics produced will match the population parameters. If on the
other hand, the large size of the patient population could lead to a costly census

5A sample (or a score population sample) in this context is a single observation randomly gener-
ated by an often unspecified scoring process, which is specific to each rater.

6A census refers to the participation of all subjects of interest in the study
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that the researcher cannot afford, then a more affordable option is to survey
a subgroup of patients. In this case, the results will be projected only to the
predefined finite population of patients from which the participating subjects
were selected. Note that the same reasoning applies to the population of raters.
That is, statistical inference may be required for the subject population, the
rater population, or for both populations. This inferential approach is referred
to as “Finite Population Inference7, and will be the focus in this chapter.

6.2 Finite Population Inference in Inter-Rater Reliability Analysis

Let us consider a reliability study that aims at quantifying the extent of agree-
ment among raters with respect to a given scoring method. We assume that R raters
form the rater universe named UR , and are of interest as potential users of the classi-
fication method being tested. Likewise, N subjects forming a subject universe named
US are of interest after each of them had been identified as a possible candidate to
be scored by one of the R raters. The researcher will ideally want to claim that all
R raters can rate all N subjects with a high level of agreement. The raters in the
rater population of inference, and subjects in the subject population of inference are
labeled as follows:

US = {1, · · · , i, · · · , N},
UR = {1, · · · , g, · · · , R}.

Although some of the R raters and some of the N subjects will not participate in the
actual reliability experiment, the researcher still wants the experimental results to be
applicable to them. One approach for making this feasible is to start by defining inter-
rater reliability, the percent agreement and percent chance agreement with respect
to these two populations. If the target numbers of subjects (N) and raters (R) are
small then all subjects and raters can be included into the reliability experiment
at a reasonable cost. If these numbers are large however, the cost of including all
raters and subjects of interest into the study will become prohibitive. A solution to
this cost problem is often to randomly select a subset of n subjects from the subject
population US and another subset of r raters from the rater population UR . The two
subsets referred to as the “Rater sample” (denoted by s�r) and the “Subject sample”
(denoted by sn) define the participants in the inter-rater reliability experiment. In the
notation s�r , letter s indicates that the group of units (subjects or raters) represents

7This framework for statistical inference was invented by a Polish mathematician named Neyman
(1934) and is widely used in large-scale social and business survey projects. Key references related to
this topic include Cochran (1977), and Särndal et al. (2003). The main advantage of this approach
is found in its ability to generate variances that are valid regardless of the sampling distribution of
the agreement coefficients.
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6.2. Finite Population Inference - 177 -

a sample (not a population), the star (�) indicates that the sample unit is the rater,
and r represents the count of raters in the sample. On the other hand sn (s without
the star) represents a sample of n subjects.

Each time an inter-rater reliability experiment is based on a group of subjects or
a group of raters that is smaller than the one being targeted, there is a loss of infor-
mation that will subject resulting agreement coefficients to errors due to sampling
(also known as “Sampling Errors”). Quantifying this sampling error and using it in
all decisions involving the inter-rater reliability, are among the most fundamental
goals of statistical inference. If the reliability experiment involves all N subjects and
all R raters of interest then no sampling error will be associated with the resulting
agreement coefficients, and there will be no need for inference.

6.2.1 The Notion of Sample

Some researchers with background in the social or medical sciences tend
to refer to each individual subject as a population sample, and to see a group of n
subjects as n subject population samples, the same way one would see 10 blood drops
in a medical facility as 10 blood samples. However, the selection of an entire group
of n subjects as a whole and the selection of an entire rater group as a whole are the
most fundamental building blocks in finite population inference. Consequently, the
group of n subjects will be referred to as one sample of subjects of size n, while the
whole group of r raters will be seen as one sample of raters of size r.

Note that our ultimate goal is to obtain the sampling distribution of the sample-
based agreement coefficient. But the magnitude of the agreement coefficient is deter-
mined by both the rater and the subject samples, as well as the respective populations
they were selected from (see Figure 6.1 - shaded areas represent what is observable
in the process). Therefore the sampling distribution of the agreement coefficient is
essentially determined by the selection probability of the whole subject and rater
samples. Individual subjects and individual raters have a marginal importance in
the inference. Only whole samples are relevant.

For the sake of fixing ideas, let us label all r sample raters and all n sample
subjects with numbers as follows:

s�r = {1, · · · , g, · · · , r}, and sn = {1, · · · , i, · · · , n}.

The framework of finite population inference requires that both samples sn and s�r
be selected randomly. The random selection of both groups induces a randomization
process, which will define the probabilistic structure of statistical inference.

In a target population of N subjects for example, the total number of samples
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Subject Population Rater Population

Agreement
Coefficients

Subject Sample Rater Sample

Inter-Rater Reliability 
Study Design

Subject sampling

Dataset of Ratings

Rater sampling

Data Processing

Assignment of Raters 
to Subjects

Defining the target Populations

Rating of Subjects

Figure 6.1: The Random Process Leading to the Agreement Coefficients

of size n that one may form is the number of combinations8 of N objects taken n at
a time, and is denoted by C

n

n. Likewise C
r

r, which is the number of combinations9

of R raters in groups of r, equals the total count of rater samples of size r one can
form from a population of R raters. Note that the researcher will have considerable
flexibility in the way the subjects and raters are included in the samples as long as the
selection process is random. For example one may decide that all subjects will have an
equal chance of being selected for participation in the reliability study, in which case
all C

n

n samples of subjects will have the same chance (p = 1/C
n

n) of being retained.
This is the simple random sampling design. However, the researcher may also decide
that one particular subject i0 has to be part of any participating group for a reason.
Such a design will assign a 0 selection probability to all samples not comprising
subject i0. In this case not all samples have the same selection probability. This is

8Note that C
n

n =
(
N
n

)
= N !/

[
n!(N − n)!

]
where N ! = N × (N − 1) × · · · × 1 is N factorial.

Moreover, C
n

n can be calculated with MS Excel using the function “ = COMBIN(N,n)”
9i.e. C

r

r =
(
R
r

)
= R!/(r!(R− r)!)
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a complex sampling design. In this chapter, we will confine ourselves to the simple
random sampling design where all samples have the same selection probability.

6.2.2 Assigning Raters to Subjects

The inter-rater reliability study design must include the assignment of raters
to subjects. Which rater must rate which subject? There are several design options
that are available to the researcher, some of which being more practical and/or
efficient than others depending on the type of investigation being conducted. The
most commonly-used option in the literature is what I refer to as the Fully-Crossed
design with no random selection of raters (let us call this the FC1 design). All raters
of interest must rate each subject selected for the inter-rater reliability experiment.
A second option is the fully-crossed design with random selection of raters, where
only a few raters are randomly selected from an initial pool of raters on interest (let
us call this the FC2 design). In general a fully-crossed design requires the same 3
raters or more to rate all subjects. This may be impractical or expensive or both
for various reasons. An attractive alternative that some researchers have used is the
Partially-Crossed design with 2 raters per subject (let us call this the PC2 design).
According to this design, each subject is assigned 2 raters randomly chosen from an
initial target pool of raters.

I like to mention a few scenarios where the researcher might want to consider the
PC2 design. If the rating of human subjects requires a rater-subject interaction that is
involved, then it would be unwise to design an inter-rater reliability experiment where
10 raters for example must rate each of the subjects retained. Asking a human subject
to accommodate the exact same demanding rating process several times would be
unacceptable. The subject needs not be human. It may be a scientific laboratory that
is rated by raters working for an accrediting agency. Typically these laboratories must
fund the scoring activity performed by an accrediting agency. Accrediting agencies
occasionally need to conduct an inter-rater reliability study to ascertain the reliability
of the accreditation process. Due to the high cost of accrediting a laboratory, the
accrediting agency will want to fund a single rating of the same laboratory in addition
to what the lab has funded as part of the regular accreditation process. These two
examples shows why the PC2 design can be useful in some applications.

I will show in subsequent sections of this chapter that for the same number of
subjects and raters, the FC1 design produces agreement coefficients with standard
errors that are smaller than those of the PC2 design. Although the FC1 design is
inconvenient at times, it always produces more accurate agreement coefficients than
the PC2 design when used. Consequently, FC1 should be the option of choice when-
ever it is feasible. Unlike the FC1 design which exposes any agreement coefficient
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- 180 - Chapter 6: Agreement Coefficients & Statistical Inference

to up to 2 sources of variation10, the PC2 design exposes agreement coefficients to
an additional source of variation that stems from the random assignment of pairs
of raters to subjects. Nevertheless, the PC2 design is sometimes the only practical
option available to the researcher.

6.2.3 The Notion of Parameter in Finite Population Inference

Let i be an arbitrary population subject, and k one of the q response cate-
gories into which a rater may classify subject i. If all R raters in the target population
were to score subject i, then Rik would be the count of population raters to classify
subject i into category k. Likewise Pik = Rik/Ri would be the percent of population
raters to classify subject i into category k, where Ri is the count of population raters
who rated subject i. The population percent of raters πk to classify (a subject) in
category k is given by:

πk =
1

N

N∑
i=1

Pik. (6.2.1)

For the sake of clarity and simplicity, let us consider Fleiss’ generalized weighted
Kappa as an example (Fleiss, 1971). The percent agreement and percent chance
agreement, calculated at the population level (i.e. when all target subjects, raters
and their respective ratings are known) are respectively denoted by Pa and Pe (the
P ’s are capitalized to indicate that the probabilities are evaluated based on the entire
target universe of subjects and raters, and not restricted to samples or subsets of
that universe), and defined as follows:

Pa =
1

N

N∑
i=1

q∑
k=1

Rik(R
�
ik − 1)

Ri(Ri − 1)
, and Pe =

q∑
k,l

wklπkπl, (6.2.2)

where R�
ik is the weighted count of raters who classified subject i into any category

affiliated11 with k (i.e. it is the sum of all wklRil across all values of l). For a re-
searcher using Fleiss’ generalized Kappa coefficient, the parameter of interest κf for
the purpose of inference is defined as,

κf =
(
Pa − Pe

)/(
1− Pe

)
. (6.2.3)

All the quantities Pik, πk, Pe, Pa or κf are population parameters to be estimated
from the subject and rater samples. We generally use capital Latin letters or Greek

10These 2 sources of variation are the selection of subjects and/or the selection raters.
11Two categories k and l are affiliated if the corresponding agreement weight wkl takes a non-zero

value, and the magnitude of wkl is the degree of affiliation of l towards k. That is a classification of
a subject into these categories is seen as partial agreement.
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letters for population parameters, while sample-based estimated values of these pa-
rameters use small Latin letters, or capital Latin letters with a hat on top. I will
formulate these estimated parameters in a way that is unique for the FC1 and PC2

designs.

To conduct an inter-rater reliability12, suppose that a researcher decides to ran-
domly select n out of N subjects of interest, and r out of R raters of interest.
Therefore pik = rik/ri is the relative number of times subject i was classified into
category k, with ri being the number of sample raters who provided a rating for
subject i. Note that, under the FC1 design where all r sample raters are expected to
rate each subject i, ri represents the number of ratings associated with subject i and
can take integer values ranging from 1 to r, while rik is the number of times subject
i was classified into category k and can take integer values from 0 to r. The situation
is slightly different under the PC2 design. Under this design only 2 of the r sample
raters are assigned to rate subject i. Therefore ri can only take one of the 2 possible
values 1, and 2, while rik can take one of the values 0, 1, and 2. The estimated percent
agreement Pa and percent chance agreement Pe respectively denoted by pa and pe

are defined as follows:

pa =
1

n

n∑
i=1

q∑
k=1

rik(r
�
ik − 1)

ri(ri − 1)
, pe =

q∑
k,l

wklπ̂kπ̂l, (6.2.4)

where r�ik is the weighted number of times that subject i was classified into a category
affiliated with k, π̂k is the estimated propensity for classification into category k. For
all practical purposes, it is the relative number of times a subject is classified into
category k (or the average of the n values pik (i = 1, · · · , n), and represents an
estimated value of πk. For simplicity of notations, we will often use π (without a hat)
in place of π̂. The estimated value of the Fleiss’ agreement coefficient of equation
6.2.3 is denoted by κ̂f and given by:

κ̂f =
pa − pe

1− pe

. (6.2.5)

The rater and subject samples must be selected in such a way that the estimated
coefficient κ̂f is as close as possible to its unknown population counterpart κf. In-
vestigating the relationship between the sample-based κ̂f and the population-based
κf is a key goal of statistical inference. Note that justifying the particular form that
the population-based coefficient takes (e.g. equation 6.2.3)) is not an integral part of
the finite population inference framework. This latter task is accomplished with the
use of statistical models as shown in chapter 5.

12I always assume throughout this book that only subjects rated by one rater or more are con-
sidered in the analysis. All subjects that do not receive any rating must be excluded from analysis
altogether.
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For Gwet’s AC1 or AC2, the associated population parameters will be respectively
κ1g and κ2g. Their sample-based estimates, respectively denoted by κ̂1g and κ̂2g, are
defined in chapter 5. Their variances are discussed in the next few sections.

6.2.4 The Nature of Statistical Inference

Three distinct activities generally define what is known as statistical infer-
ence. These are,

• Point estimation of a population parameter,

• Interval estimation of a population parameter,

• Test of hypothesis.

Point estimation is about obtaining a single number as our best approximation of
a population parameter using the subject and rater samples. For example pa will often
be our best sample-based approximation of the population parameter Pa. However,
the estimation pa is subject to a sampling error, which may be large. To deal with this
error, some researchers will use interval estimation, which provides a range of values
in the form of an interval, expected to include the “true” value of the parameter with
a high level of confidence. Hypothesis testing on the other hand, determines whether
or not a conjecture about the magnitude of a population parameter is consistent
with observed ratings. For example the hypothesis that “The Kappa coefficient (at
the population level) is greater than 0.20” may or may not be consistent with the
ratings observed on a subject sample. Hypothesis testing is a procedure that leads
to the rejection or the non rejection of hypotheses.

The inferential procedures of point estimation, interval estimation or hypothesis
testing are all built from the sampling distribution of the sample-based agreement
coefficients. For example, the overall percent agreement pa is a function of the subject
sample sn, and the rater sample s�r . Consequently, each pair of samples (sn, s

�
r) will

lead to a different percent agreement value pa(sn, s
�
r). All C

n

n × C
r

r such pairs of
samples lead to a series of C

n

n × C
r

r values pa(sn, s
�
r), which forms the sampling

distribution of pa upon which statistical inference is built. Expectations, standard
errors, and variances are calculated using that discrete sampling distribution. When
the subject and rater samples are both generated by a random sampling process,
the inference is said to be unconditional . If the subjects are selected randomly
and all raters of interest included in the study as participants without sampling,
then the inference will be conditional upon the specific group of participating raters.
Although not common in practice, the situation where only raters are subject to
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random sampling will lead to inference conditionally on the subject sample.

6.2.5 Independence of Subjects and Its Impact on Statistical Inference

Some nominal-scale inter-rater reliability experiments require raters to rate
each subject more than once. Because the same rater produces several ratings for
the same subject, some researchers often conclude that these ratings are no longer
independent, and therefore the regular agreement coefficients may no longer be ap-
plicable. I like to make a few comments regarding this issue:

• First of all, even when raters assign a single rating to each subject, these ratings
are still no independent. This is due to the fact that ratings from different raters
are tied to the same subjects, and ratings for different subjects are tied to the
same raters.

• There is nothing in the construction of inter-rater reliability coefficients that
is based on the assumption of independence. Therefore, computing agreement
coefficients will always be technically feasible when rating data is available.
In statistical science in general, independence affects the precision with which
statistics are calculated, not the calculation of these statistics. They can always
be calculated, although they may be more or less depending on the nature of
the correlation in sample data.

• For the agreement coefficients discussed in this book, even the precision will not
be affected by the correlation between ratings. The variance of nominal-scale
inter-rater reliability coefficients is computed using only the sampling distri-
bution induced by the random selection of subjects or the random selection of
raters or both. These derivations are design-based and do not rely on any as-
sumptions of independence. The critical thing here is for subjects to be selected
randomly. All ratings associated with one subject will have to be treated as if
they were produced by different raters for the purpose of computing inter-rater
reliability. However, replication can help compute intra-rater reliability as well
as inter-rater reliability. This is the main benefit of replication.

6.3 Conditional Inference

This section deals with inferential procedures pertaining to reliability experi-
ments where either the subjects or the raters are selected randomly, but noth both.
That is if the subjects participating in the reliability study are selected randomly
from the subject population, then no rater other than those participating in the
study will be of interest. Likewise, if the participating raters are randomly selected
from a larger rater population, then all subjects of interest will be included in the
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study. Section 6.3.1 is devoted to the situation where the subject sample is randomly
selected from a bigger subject population, but all raters of interest participate in the
reliability experiment. Therefore, the statistical error associated with the agreement
coefficient will solely be due to the sampling of subjects.

6.3.1 Inference Conditionally Upon the Rater Sample

The researcher may decide that only the r participating raters in the rater
sample s�r will be of interest, and no effort will be made to project the results beyond
that group of raters. The rater sample s�r in this context, is identical to the rater
population for the purpose of analysis. Here is a situation where any inter-rater
reliability coefficient κ̂ will solely be a function of the subject sample. Each subject
sample sn among the C

n

n possible samples will yield a specific agreement coefficient
κ̂(sn). Therefore, there are C

n

n possible values for the agreement coefficient, which
provide the sampling distribution needed for statistical inference. This inferential
procedure will be carried out conditionally upon the specific rater sample s�r , and
will be referred to as the Conditional Inference on the Rater Sample or the Statistical
Inference Conditionally upon the Rater Sample.

By definition, the “true” or “Population”, or “Exact” variance of an agreement

coefficient κ̂ is the straight variance of all sample-based κ̂
(
s
(b)
n

)
values taken on each

of the C
n

n possible subject samples. It is given by:

V
(
κ̂(sn)|s�r

)
=

C
n

n∑
b=1

P
(
s(b)n

)[
κ̂
(
s(b)n

)− κ̂
]2
, (6.3.1)

where s
(b)
n is the bth subject sample, κ̂ is the average of all C

n

n possible values that can

be taken by the agreement coefficient κ̂
(
s
(b)
n

)
, and P

(
s
(b)
n

)
the probability of selecting

the specific sample s
(b)
n .

Evaluating the variance of an agreement coefficient using equation 6.3.1 is an
impossible task. Not only will it be a tedious process to select all possible subject
samples of size n out of the target population of N subjects, but implementing
equation 6.3.1 would also require each of the N population subjects to have been
scored by all raters, which is almost never the case. Consequently the exact variance
of the agreement coefficient must be approximated based on a single subject sample
and a single rater sample, which is all practitioners have at their disposal. The
mathematical formulas used to compute these approximations, are referred to in the
statistical literature as Variance Estimators as opposed to “Exact” variances such as
equation (6.3.1). Gwet (2008a) suggested variance estimators for the AC1, Kappa,
Pi, and Brennan-Prediger (BP) agreement coefficients. These results are summarized
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here, and then expanded to accommodate the missing ratings, as well as the use
of weights. As in the previous chapters, we will treat two-rater and multiple-rater
experiments separately for the sake of clarity.

6.3.1a) VARIANCES FOR TWO RATERS
BASED ON CONTINGENCY TABLES

In an inter-rater reliability experiment involving 2 raters A and B (i.e. r = 2),
the ratings are often summarized as shown in Table 3.5 of chapter 3, where nkl

represents the count of subjects that raters A and B classified into categories k and l
respectively, and pkl = nkl/n the corresponding percentage. Moreover, pk+ = nk+/n
and p+k = n+k/n represent raters’ A and B marginal classification probabilities
respectively. As Fleiss (1971) suggested, πk = (pk+ + p+k)/2 is interpreted as the
probability that a randomly selected rater would classify a randomly selected subject
into category k. If you are using interval data, then k might represent an interval
score xk instead.

Two-Rater Variances of the AC1 and AC2 Statistics

Let κ̂1g and κ̂2g denote the AC1 and AC2 statistics respectively. It follows from
chapter 5 that both coefficients take the form of a ratio (pa − pe)/(1 − pe) where
pa, and pe are the percent agreement and percent chance agreement respectively.
Assuming that f = n/N is the sampling fraction (i.e. the fraction of the target
population that was sampled)13,

� When there is no missing rating, and the ratings are organized in a contingency
table, then the variance of the AC1 coefficient proposed by Gwet (2008a) is
given by:

v
(
κ̂1g

)
=

1− f

n(1− pe)2

{
pa(1− pa)− 4(1− κ̂1g)

q∑
k=1

pkk

(
1− πk
q − 1

)

+ 4peκ̂1g(1− κ̂1g) + 4(1− κ̂1g)
2

q∑
k=1

q∑
l=1

pkl

(
1− πkl
q − 1

)2
}
,

(6.3.2)

where πkl = (πk + πl)/2.

� When there is no missing rating, and the ratings are organized in a contingency

13In many studies the size of the subject population N is unknown, in which case one should set
f = 0. This amounts to assuming that the sampling fraction is negligible for all practical purposes.
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table, then the variance of the AC2 coefficient (i.e. weighted AC1) is given by:

v
(
κ̂2g

)
=

1− f

n(1− pe)2

{
q∑
k,l

pkl

[
wkl − 2(1− κ̂2g)

(
Tw(1− πkl)

q(q − 1)

)]2

−
[
κ̂2g − pe(1− κ̂2g)

]2}
,

(6.3.3)

where Tw is the summation of all agreement weights. Note that equation 6.3.2
is a special case of equation 6.3.3 used with identity set of weights (i.e. weights
were all diagonal elements are 1 and all off-diagonal elements are 0).

� If your data contains missing ratings (i.e. some subjects were rated by single
rater, as opposed to being rated by both raters), then I recommend to avoid
organizing it in a contingency table. Instead, you would have two columns of
ratings (one column for each of the two raters), where each row is associated
with a subject. The variance expression to used is provided by equation 6.3.17.

Two-Rater Variances of the Unweighted and Weighted Scott’s π Coefficient

Scott’s π statistic (Scott, 1955) is given by κ̂s = (pa − pe)/(1 − pe), where pe is
Scott’s percent chance agreement of equation 3.3.2 in chapter 3.

� When there is no missing rating, and the ratings are organized in a contingency
table then the variance of the unweighted Scott’s coefficient proposed by Gwet
(2008a) is given by:

v
(
κ̂s
)

=
1− f

n(1− pe)2

{
pa(1− pa)− 4(1− κ̂s)

q∑
k=1

pkkπk

+4peκ̂s(1− κ̂s) + 4(1− κ̂s)
2

q∑
k=1

q∑
l=1

pklπ
2
kl

}
,

(6.3.4)

� When there is no missing rating, and the ratings are organized in a contingency
table, then the variance of the weighted Scott’s coefficient is given by,

v
(
κ̂s
)

=
1− f

n(1− pe)2

{
q∑
k,l

pkl

[
wkl − 2(1− κ̂s)πkl

]2
−
[
κ̂s − pe(1− κ̂s)

]2}
,

(6.3.5)

Get the entire ebook for $19.95 using the link: https://sites.fastspring.com/agreestat/instant/cac5ed978_1_7923_5463_2e

https://agreestat.com/books/cac5/ https://agreestat.com/books/



6.3. Conditional Inference - 187 -

where pe, p+k, pl+, πk, and πkl are defined as follows:

pe =
∑
k,l

wklπkπl, πk = (p+k + pk+)/2,

p+k =

q∑
l=1

wklp+l, pl+ =

q∑
k=1

wklpk+, and πkl = (πk + πl)/2
(6.3.6)

� Your data may contain missing ratings (i.e. some subjects were rated by single
rater, as opposed to being rated by both raters). In this case, I recommend
organizing it in the form of two columns of ratings14 instead of organizing it
in a contingency table. The variance expression to use is provided by equation
6.3.18.

Two-Rater Variances of the Unweighted and Weighted Cohen’s Kappa

The Kappa coefficient (Cohen, 1960) is given by κ̂c = (pa − pe)/(1 − pe), where
pe is Cohen’s percent chance agreement (see equation 3.3.1 of chapter 3).

� When there is no missing rating, and the ratings are organized in a contingency
table then the variance of the unweighted Cohen’s kappa coefficient is given by,

v
(
κ̂c
)

=
1− f

n(1− pe)2

(
pa(1− pa)− 4(1− κ̂c)

q∑
k=1

pkkπk

+ 4peκ̂c(1− κ̂c) + 4(1− κ̂c)
2

q∑
k=1

q∑
l=1

pklπ
2
kl

)
,

(6.3.7)

where πkl = (p+k + pl+)/2. A version of this expression was initially published
by Gwet (2008a), and is mathematically equivalent to equation 13 of Fleiss et al.
(1969), assuming no finite population correction (i.e. the sampling fraction f
is 0).

� When there is no missing rating, and the ratings are organized in a contingency
table, then the variance of the weighted Cohen’s kappa coefficient is given by,

v
(
κ̂c
)

=
1− f

n(1− pe)2

{
q∑
k,l

pkl

[
wkl − 2(1− κ̂c)πkl

]2
−
[
κ̂c − p′e(1− κ̂c)

]2}
,

(6.3.8)

14There will be one column for each of the two raters, and a row represents the ratings associated
with one subject.
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where πkl = (p+k + pl+)/2 (Note that the πkl used here is different from that
used to compute the variance of Scott’s coefficient in equation 6.3.6). Note that
the percent chance agreement pe for the weighted Kappa coefficient is given by,

pe =

q∑
k,l

wklpk+p+l.

� If your data contains missing ratings for some subjects, then I suggest to avoid
summarizing it in a contingency table before analysis. Instead, the ratings from
both raters must be listed explicitly and the more general variance equation of
Conger’s Kappa (c.f. equation 6.3.22) must be used.

Two-Rater Variances of the Unweighted and
Weighted Brennan-Prediger Coefficient

The generalized G-index, also referred to as the Brennan-Prediger (BP) coefficient
is given by κ̂bp = (pa − 1/q)/(1− 1/q).

� When there is no missing rating, and the ratings are organized in a contingency
table then the variance of the unweighted BP coefficient is given by,

v
(
κ̂bp
)
=

1− f

n(1− 1/q)2
pa(1− pa). (6.3.9)

� When there is no missing rating, and the ratings are organized in a contingency
table, then the variance of the weighted BP coefficient is given by,

v
(
κ̂bp
)
=

1− f

n(1− pe)2

q∑
k=1

q∑
l=1

pkl(wkl − pa)
2, (6.3.10)

where pa is the weighted percent agreement (i.e. the weighted sum of the pkl
values).

� If your data contains missing ratings then I recommend analyzing the raw
ratings rather than the contingency table to avoid any loss of information. The
more general variance equation 6.3.19 of the BP coefficient must be used.

Two-Rater Variance of the Unweighted and
Weighted Krippendorff’s α̂k

Krippendorff’s alpha coefficient denoted by α̂k is based solely on subjects that
were rated by both raters. All subjects with a missing rating are downright ex-
cluded from analysis. For the purpose of calculating Krippendorff’s alpha, n always
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represents the count of subjects rated by both raters. This coefficient is given by
α̂k = (pa−pe)/(1−pe), where pa = (1− εn)p

′
a+ εn, εn = 1/(2n), p′a and pe are given

by,

p′a =

q∑
k,l

wklpkl, and pe =

q∑
k,l

wklπkπl. (6.3.11)

pkl = nkl/n is the relative number of subjects that raters A and B classified into
categories k and l respectively. Moreover, πk = (pk++p+k)/2 where pk+ = proportion
of subjects that rater A classified into category k, and p+l = proportion of subjects
that rater B classified into category l.

The standard error of the weighted Krippendorff’s alpha coefficient is obtained
as the square root of its variance, which is defined as follows:

v
(
α̂k

)
=

1− f

n′(1− pe)2

{
q∑
k,l

pkl

[
wkl − (1− α̂′

k)πkl

]2
−
[
α̂′
k − pe(1− α̂′

k)
]2}

,

(6.3.12)

where n′ is the number of subjects rated by both raters, α̂′
k = (p′a − pe)/(1 − pe),

and πk, πl, and πkl are defined as follows:

πk =

q∑
l=1

wklπl, πl =

q∑
k=1

wklπk, and πkl = (πk + πl)/2. (6.3.13)

Note that the quantity πkl used here is different from that used to compute the
variances of Scott and coefficient and that in equation 6.3.6).

This variance expression can be used for computing the weighted as well as the
unweighted Krippendorff’s coefficient. To get the unweighted coefficient, one needs
to use identity weights. If your dataset contains missing ratings then the contingency
table should not be used. Instead the raw ratings must be used along with the more
general variance expression of Krippendorff’s alpha of equation 6.3.21.

Two-Rater Variances of the Unweighted and
Weighted Percent Agreement

The weighted percent agreement pa is given by,

pa =

q∑
k=1

q∑
l=1

wklpkl. (6.3.14)

Used with identity weights, this expression will yield the regular unweighted percent
agreement known in the literature.
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� When there is no missing rating, and the ratings are organized in a contingency
table, then the variance of the weighted percent agreement is given by,

v(pa) =
1− f

n

q∑
k=1

q∑
l=1

pkl(wkl − pa)
2. (6.3.15)

� If your data contains missing ratings then rather than organizing it in the form
of a summary contingency table, I recommend analyzing the raw ratings to
avoid any loss of information. The more general variance expression of equation
6.3.20 is more appropriate in this situation.

Example 6.1

Let us once again consider the inter-rater reliability data of Table 3.4 in chapter 3. This
data represents the distribution of patients with back pain classified into 3 pain cate-
gories by two clinicians 1 and 2. The inter-rater reliability experiment that produced it
involves a sample of 102 participating patients randomly selected from a larger popu-
lation of patients of interest suffering from back pain. However no clinician other than
the two who participated in the experiment is of interest. Consequently, any extent
of agreement obtained will only be applicable to the two participating clinicians. The
standard error calculated in this situation must be conditional on this specific pair of
participating clinicians. That is, it will measure the variation that is solely due to the
selection of patients, the two patients being fixed.

Table 6.3: Percent of Patients (pkl) with Back Pain by Pain Category and
Clinician

Clinician 1 Clinician 2 Category

Category DER(%) DYS(%) POS(%) (pk+)a (πk)b

DER 21.6 9.8 2.0 0.333 0.314
DYS 5.9 26.5 10.8 0.431 0.422
POS 2.0 4.9 16.7 0.235 0.265

(p+k)c 0.294 0.412 0.294 1 1

aClinician 2’s category classification probability
bAverage category classification probability
cClinician 1’s category classification probability
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Table 6.4: Agreement Coefficients and Associated Standard Errors for
Table 3.4 Data

Agreement Statistics
Coefficients Coefficient Standard Error (pa)a (pe)b

Gwet’s AC1 0.4757 0.070 0.6471 0.3269

Scott’s Pi 0.4602 0.073 0.6471 0.3462

Cohen’s Kappa 0.4613 0.073 0.6471 0.3449

Brennan-Prediger 0.4706 0.071 0.6471 0.2500

Krippendorff’s Alpha 0.4628 0.073 0.6488 0.3462

aPercent Agreement
bPercent Chance Agreement

Table 6.3 contains various probabilities used in the standard error calculation, while
Table 6.4 shows the magnitude of different agreement coefficients and their associated
standard errors. The standard error is the most commonly-used precision measure in
practice.

A standard error of 0.070 associated with an AC1 coefficient of 0.4757 should be

interpreted as follows: “Our best estimate of the extent of agreement between clinicians

1 and 2 based on the AC1 statistic and a sample of 102 patients is 0.4757. Its margin

of error of 0.14 (i.e. 2 × 0.070) indicates that our best estimate may be off by 0.14,

more or less.” In other words the “True” extent of agreement, which is based on all

subjects in our target population could be as low as 0.3350 and as high as 0.6163. Some

researchers may deem this range of values too wide, it reflects the limitations of the

inter-rater reliability experiment that produced it. A remedy to this problem would

be to increase the number of patients participating in the experiment. Guidelines for

computing the optimal number of subjects are discussed in section 6.5.

Example 6.1 indicates that the margin of error associated with an agreement
coefficient could be substantial. The following 3 important factors could contribute
to its magnitude:

� The size n of the subject sample is a key contributing factor to the magnitude
of the margin of error. An increase in number of participating subjects will
lead to a decrease in the margin of error. However adding more subjects in
an inter-rater reliability experiment will make it more expensive. Therefore a
compromise must be found between the desired precision level for your estimate
and the cost that you can afford for the experiment.
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� A second important contributing factor is the size of our target population.
Note that all variance expressions involve a multiplicative finite-population
correction factor 1− f = 1− n/N , which indicates that for a fixed sample size
n, a smaller target population (i.e. smaller value for N) will lead to a smaller
variance; and therefore to a smaller margin of error. Therefore for a limited
budget, an inexpensive way to improve the accuracy of estimates is to limit
the scope of the inter-rater reliability study by reducing the size of the target
subject population.

� The last contributing factor is the magnitude of the “true” and unknown agree-
ment coefficient. If the extent of agreement among raters is expected to be high,
one may expect the margin of error to be small for the same sample size. This
suggests that providing some training to the raters prior to the reliability ex-
periment will improve the coefficient’s precision in addition to increasing its
magnitude.

Although very useful for computing the variances of inter-rater reliability coef-
ficients when the number of raters is limited to 2, the variance equations presented
in this section are not applicable to experiments involving 3 raters or more. This
problem is addressed next.

6.3.1b) VARIANCES FOR MULTIPLE RATERS (2 OR MORE)
BASED ON RAW RATINGS

Gwet (2008a) proposed variance estimators for the multiple-rater version of AC1,
and Fleiss’ Kappa in addition to proving their validity with a Monte-Carlo simula-
tion. The objective in this sub-section is to summarize these results, and to expand
them in order to cover the weighted agreement coefficients, the missing ratings, as
well as Conger’s Kappa, and Krippendorff’s alpha. In order to shorten the presenta-
tion of these results, we will show variance expressions only for the weighted versions
of the coefficients. These expressions will cover unweighted coefficients as well by
using identity weights.

Let n be the number of subjects rated by one rater or more, and n′ the number
of subjects rated by two raters or more. The percent agreement on a specific subject
i is denoted by pa|i and is formulated as follows:

pa|i =
q∑

k=1

rik(r
�
ik − 1)

ri(ri − 1)
, if ri ≥ 2, and pa|i = 0 otherwise. (6.3.16)

You may want to refer to equation 6.2.4 for a definition of the different variables
used in this equation.
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� The AC2 Coefficient

Let f = n/N be the sampling fraction, and wkl the set of weights to be used
in the analysis. The AC2 coefficient is defined by equation 5.6.1 of chapter 5,
and its variance given by,

v
(
κ̂g
)
=

1− f

n

1

n− 1

n∑
i=1

(
κ�g|i − κ̂2g

)2
, (6.3.17)

where,

• κ�g|i = κg|i − 2(1− κ̂g)
pe|i − pe

1− pe
,

• κg|i =
{

(n/n′)(pa|i − pe)/(1− pe), if ri ≥ 2,

0, otherwise,

• pe|i =
Tw

q(q − 1)

q∑
k=1

rik
ri

(1− πk).

This expression may also be used to compute the variance of the AC1 coefficient
by using the appropriate set of weights (the identity weights).

� Fleiss’ Kappa Coefficient κ̂f

The variance of Fleiss’ Kappa coefficient (see section 4.4 of chapter 4 for a
definition of the weighted Fleiss’ coefficient) is given by,

v(κ̂f) =
1− f

n

1

n− 1

n∑
i=1

(
κ�f|i − κ̂f

)2
, (6.3.18)

where,

• κ�f|i = κf|i − 2(1− κf)
pe|i − pe

1− pe
,

κf|i =
{

(n/n′)(pa|i − pe)/(1− pe), if ri ≥ 2,

0, otherwise,

• pe|i =
q∑

k=1

πkrik/ri, with πk = (πk+ + π+k)/2,

πk+ =

q∑
l=1

wklπl, and π+l =

q∑
k=1

wklπk.

The weight matrix is generally symmetric, in which case πk+ = π+k.
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