
CHAPTER
�

�

�

�
5

Constructing Agreement
Coefficients: AC1 and Aickin’s α

OBJECTIVE
This chapter presents a detailed discussion of two paradox-resistant alternative agreement
coefficients named the AC1 and Aickin’s α (not to be confounded with Krippendorff’s α of
the previous chapter) proposed by Gwet (2008a) and Aickin (1990) respectively. These two
agreement coefficients will be constructed step by step, from the definition of the theoretical
construct to the formulation of the coefficient. All intermediary steps, which include the
underlying statistical model, and the subject and rater population parameters will be spelled
out. This chapter focuses particularly on the AC1 coefficient, and aims at providing a detailed
account of its real meaning, its advantages, and possible limitations. Also discussed is Gwet’s
AC2, the extension of AC1 to ordinal, interval and ratio ratings
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- 140 - Chapter 5: Constructing Agreement Coefficients

“There is no true value of any characteristic, state, or condition that is
defined in terms of measurement or observation. Change of procedure for
measurement (change in operational definition) or observation produces a
new number · · · . There is no such thing as a fact concerning an empirical
observation.”

- Edwards Deming (1900-1993) -

5.1 Overview

In this chapter, I discuss two particular agreement coefficients: (1) the AC1

statistic proposed by Gwet (2008a) as a paradox-resistant alternative to the un-
stable Kappa coefficient, and (2) the alpha (α) coefficient of Aickin (1990)1, an
inter-reliability statistic based on a clear-cut definition of the notion of “extent of
agreement among raters.” I present the reader with a clear view of a step-by-step
construction of an agreement coefficient, and will conduct an elaborate discussion
of the underlying assumptions. Both coefficients differ from Kappa mainly in the
way the percent chance agreement is calculated. As a matter of fact, the notion of
chance agreement is pivotal in the study of chance-corrected agreement coefficients.
Understanding it well is essential for developing effective agreement coefficients. The
poor statistical properties of Kappa for example stem precisely from the inadequate
approach used to evaluate the percent chance agreement.

Several authors have justified the Kappa coefficient on the ground that it rep-
resents the difference between the observed percent agreement (pa) and the percent
chance agreement2 (pe), which is normalized by its maximum value (1− pe) so that
the coefficient is confined within the (0, 1) interval. The problem is that this whole
operation describes something that may not even be remotely close to what raters
actually do. My views on this are more in line with Grove et al. (1981) who while
talking about what diagnosticians in the medical field actually do said this: “They
assign the easy cases or textbook cases, to diagnoses with little or not error; they may
guess or diagnose randomly on the others. If one knew which cases were textbook
cases, one could them separately; but that is a difficult matter.” I strongly believe
that the distinction between textbook and non-textbook cases is the crux of the mat-
ter. Confronting this issue head-on is as important and difficult as it is inevitable,
and how it is approached might decide how good or bad the agrement coefficient will
turn out to be.

Grove et al. (1981) describes Kappa’s percent chance agreement in the following

1Not to be confounded with Krippendorff’s alpha, which is an entirely different coefficient dis-
cussed in the previous chapters.

2Chance agreement here stands for agreement when two raters assign ratings to subjects ran-
domly.
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5.1. Overview - 141 -

terms: “When in doubt on a nontextbook case, each rater mentally flips a biased
coin, with the probability of getting heads (giving the diagnosis) equal to his own
base rates ...” This characterization of Kappa’s percent chance agreement is likely
too generous because Kappa’s percent chance agreement does not behave near as
well. The problem stems from the first 3 words ”When in doubt” of this quote. In
fact, there nothing considered to be an integral part of kappa, which suggests that
its expression for chance-agreement probability applies only when the raters are in
doubt. Kappa expression does not incorporate an estimate of the nontextbook or
uncertain cases.

The Kappa and Pi coefficients rely on a percent chance agreement or chance-
agreement probability expression that is valid only under the improbable assumption
that all ratings are known to be independent even before the experiment had been
carried out. To justify the two expressions used to evaluate the chance-agreement
probabilities of Kappa and Pi, the reasoning was that if the processes by which two
raters classify a subject are statistically independent, then the probability that they
agree is the product of the individual probabilities of classification into the category of
agreement. However, raters often rate the same subjects, and are therefore expected
to produce ratings that are dependent with possibly a few exceptions when they are
in doubt.

Throughout this chapter, I consider that independence occurs when a nondeter-
ministic3 rating (generally associated with hard or nontextbook cases) is assigned to
a subject that is hard to rate. Nondeterministic ratings may be expected on a small
fraction of subjects only, and certainly not on the whole subject sample or popu-
lation. The AC1 of Gwet (2008a), and the alpha of Aickin (1990) are based upon
the more realistic assumption that only a portion of the observed ratings will poten-
tially lead to agreement by chance. The difficulty to overcome will be to estimate the
percent of subjects that are associated with a nondeterministic rating.

When I started working on an alternative to the Kappa coefficient, I was unaware
of Aickin’s work. I learned about it only after the publication in Gwet (2008a), of
the ideas to be discussed here. I then discovered that the framework I proposed
was made more general by allowing the group of textbook subjects to be specific to
each rater instead of being unique for all raters as Aickin assumed. Moreover, my
conceptual definition of the extent of agreement among raters differ from Aickin’s.
That is both coefficients do not quantify the same concept. Aickin’s alpha coefficient
for two raters represents the portion of the entire population of subjects that both
raters are expected to classify identically for cause, as opposed to classifying them
identically by chance. To see what Gwet’s AC1 for two raters conceptually represents,
imagine that all subjects to be classified into identical categories by pure chance

3The process of rating a subject is considered nondeterministic if it has no apparent connection
with the subject’s characteristics.
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- 142 - Chapter 5: Constructing Agreement Coefficients

are first identified, then removed from the population of subjects. This operation
creates a new trimmed population of subjects where agreement by chance would be
impossible. The AC1 coefficient is the relative number of subjects in the trimmed
subject population upon which the raters are expected to agree. AC1 and alpha
coefficients both represent a probability of agreement for cause , which are calculated
with respect to two different reference subject populations. Although it is limited to
two raters only, I have found Aickin’s proposal useful and decided to include it into
the discussions.

Among Kappa’s strengths is a genuine attempt to correct the percent agreement
for chance agreement, and the simplicity with which this was done. Among its limi-
tations are the paradoxes described by Feinstein and Cicchetti (1990), where Kappa
would yield a low value when the raters show high agreement. In this chapter I pro-
pose the AC1 coefficient, which has some similarities with Kappa in its formulation
and its simplicity, in addition to being paradox-resistant. The alpha coefficient is
also close to Kappa in its form. But unlike Kappa and AC1, the alpha coefficient
is computation-intensive with its iterative procedure. AC1 and alpha both share the
same feature of being paradox-resistant.

5.2 Gwet’s AC1 and Aickin’s α for 2 Raters

This section describes the procedures for computing the AC1 and α coefficients
in the case of two raters classifying a sample of n subjects into one of q possible
categories. The calculation of these coefficients will also be illustrated in a numerical
example.

5.2.1 The AC1 Statistic

Let us consider a two-rater reliability experiment based on a q-level nomi-
nal measurement scale. As previously indicated, rating data resulting from such an
experiment could be conveniently organized in a contingency table such as Table 3.5
in chapter 3. The AC1 coefficient denoted4 by κ̂1g is defined as follows:

κ̂1g =
pa − pe
1− pe

, with pa =

q∑
k=1

p
kk
, pe =

1

q − 1

q∑
k=1

πk(1− πk), (5.2.1)

where πk = (pk+ + p+k)/2. Note that pk+ and p+k represent the relative number
of subjects assigned to category k by raters A and B respectively. The symbol p

kk

4I use κ̂1g to designate the value of AC1 estimated from observed ratings taken on a sample of
subjects. Its estimand κ1g is the AC1 value based on the entire subject population. Later in this
chapter, I will use the symbol κ̂2g to designate AC2, which is the weighted version of AC1.

Get the entire ebook for $19.95 using the link: https://sites.fastspring.com/agreestat/instant/cac5ed978_1_7923_5463_2e

https://agreestat.com/books/cac5/ https://agreestat.com/books/



5.2. Gwet’s AC1 and Aickin’s α for 2 Raters - 143 -

is the relative number of subjects classified into category k by both raters. While
πk represents the probability for a randomly-selected rater to classify a randomly-
selected subject into category k, the chance-agreement probability pe is a product of
the following two quantities:

• The probability that two raters agree given that the subject being rated is
nontextbook and was therefore assigned a nondeterministic rating. This condi-
tional5 probability is 1/q since nondeterministic ratings are considered random
with equal chance for all q categories.

• The propensity for a rater to assign a nondeterministic rating, which is esti-
mated by the ratio:

∑q
k=1 πk(1 − πk)

/
(1 − 1/q). More will be said about this

expression later in this chapter. What is important to retain from this expres-
sion is that a distribution of subjects that is skewed towards a few categories
will lower the nondeterministic rating propensity.

Section 5.4 contains a more detailed discussion of the theory behind this statis-
tic. Gwet (2008a) also provides examples and theoretical results related to the AC1

statistic.

5.2.2 Aickin’s α-Statistic

The alpha statistic α̂a of Aickin (1990) is defined as follows:

α̂a =
pa − pe
1− pe

, where pe =

q∑
k=1

p
(a)
k|h · p

(b)
k|h, (5.2.2)

and p
(a)
k|h represents the probability for rater A to classify into category k, a subject

known to be hard to classify (i.e. a nontextbook subject). The final classification
of this particular group of hard-to-classify subjects involves guesswork and will be
random. The percent agreement pa is the same as that of equation 5.2.1. The main
difference between Kappa and alpha lies in the way the percent chance agreement
is calculated. While Kappa’s percent chance agreement includes all ratings, Aickin’s
only uses ratings associated with hard-to-classify subjects. Aickin’s theory from which
the alpha coefficient is derived, is discussed in section 5.3.

Because the group of hard-to-classify subjects is not identifiable, there is no simple

expression for obtaining the probabilities p
(a)
k|h and p

(b)
k|h. To solve this problem, Aickin

(1990) proposed an iterative algorithm based on the following system of 3 equations:

5The condition here being the nondeterministic nature of the ratings, which will lead any resulting
agreement to be considered chance agreement.
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- 144 - Chapter 5: Constructing Agreement Coefficients

α̂(t+1) =
pa − p

(t)
e

1− p
(t)
e

, where p(t)e =

q∑
k=1

p
a(t)
k|h · pb(t)k|h , (5.2.3)

p
a(t+1)
k|h =

pk+(
1− α̂(t)

)
+ α̂(t)p

b(t)
k|h
/
p
(t)
e

, for k = 1, · · · , q, (5.2.4)

p
b(t+1)
k|h =

p+k(
1− α̂(t)

)
+ α̂(t)p

a(t)
k|h
/
p
(t)
e

, for k = 1, · · · , q. (5.2.5)

This iterative process is initiated with the marginal probabilities pk+ and p+k as

starting values for the varying probabilities p
a(t)
k|h and p

b(t)
k|h . That is, p

a(0)
k|h = pk+, and

p
b(0)
k|h = p+k. Therefore, the initial alpha value α̂(0) when t = 0 is identical to the

classical Kappa statistic. The next alpha value α̂(1) when t = 1 is calculated from
α̂(0) and the other probability values according to the above equations. The iterative
process stops when the difference between two consecutive Alpha values α̂(t+1) and
α̂(t) decreases below a predetermined small number such as 0.001, which represents
a threshold below which you consider two coefficients to be identical for all practical
purposes.

5.2.3 Example

I now want to illustrate the calculation of the AC1 and α agreement coeffi-
cients with a practical example. To compute the α coefficient, Aickin recommends to
add a pseudo-count6 of 1 to the total count of subjects, and to distribute it uniformly
among all cells to avoid convergence problems with the iterative algorithm. If your
experiment uses 3 categories, your table will have 9 cells. Therefore, distributing
a pseudo-count of 1 uniformly across cells increases each cell count by 1/9 = 0.11
approximately. Cells with no subject would now have 0.11 subject allowing Aickin’s
algorithm to run smoothly.

Example 5.1

To illustrate the calculation of AC1 and alpha coefficients, let us consider the reliability
data of Table 5.1. This data represents the distribution of human subjects suffering
from back pain, by pain type, and observing clinician.

6A “pseudo-count” is an integer value primarily used for changing artificially a cell count value
from being 0 to being negligible. Zero-count cells are known to be problematic to probability-based
computing systems, but cannot be eliminated unless they represent events known to be impossible.
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5.2. Gwet’s AC1 and Aickin’s α for 2 Raters - 145 -

Table 5.1: Ratings of Spinal Pain by Clinicians 1 and 2, and Pain Type

Clinician 2

Clinician 1 Derangement Dysfunctional Postural
Syndrome Syndrome Syndrome

Derangement Syndrome 55 10 2
Dysfunctional Syndrome 6 4 10

Postural Syndrome 2 5 6

Cohen’s Kappa for this data is given by κ̂c = (0.65−0.4835)/(1−0.4835) = 0.3224.
The AC1 coefficient on the other hand is κ̂1g = (0.65 − 0.257725)/(1 − 0.257725) =
0.5285. As for Aickin’s Alpha, after 10 iterations I obtained α̂a = (0.65− 0.4121)/(1−
0.4121) = 0.4047, and the final “marginal” probabilities related to hard-to-classify

subjects are given by (p
(a)
1|h, p

(a)
2|h, p

(a)
3|h) = (0.5993437, 0.2442839, 0.1563717) for clinician

A, and by
(
p
(b)
1|h, p

(b)
2|h, p

(b)
3|h
)
= (0.5321665, 0.2274873, 0.2403553) for clinician B.

You can obtain a more detailed account of these calculations by downloading the Excel
workbook,

www.agreestat.com/books/cac5/chapter5/chapter5examples.xlsx,

and reviewing the content of the worksheet entitled ”Example 5.1.

The Kappa, alpha, and AC1 statistics of example 5.1 are respectively given by
0.322, 0.405, and 0.529. Kappa represents less than half the magnitude of the per-
cent agreement probability pa = 0.65. This dramatic reduction in the magnitude of
the percent agreement is a result of Kappa’s unduly high chance-agreement correc-
tion. AC1 on the other hand represents more than 80% of the value of the percent
agreement, because of a less severe correction for chance agreement. I will explain in
the next few sections that Aickin’s alpha coefficient measures a dimension of raters’
agreement that is different from what Kappa and AC1 measure. Therefore, a direct
comparison between Aickin’s alpha and other coefficients may be inappropriate.

While AC1 and Kappa represent agreement probabilities based on the pool of
subjects from which the Hard-to-classify ones have been removed, alpha on the other
hand represents the probability of “for-cause” agreement7 based on all subjects.
Because the reference population for evaluating alpha is bigger, α̂a will generally be

7A “for-cause” agreement is an agreement situation where both raters classified a subject into
the same category for a reason, as opposed to doing it by pure chance.
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- 146 - Chapter 5: Constructing Agreement Coefficients

lower than AC1 unless the group of subjects does not have those special subjects that
may lead to an agreement by chance. Conceptually, Aickin’s alpha would be smaller
that both Kappa and AC1. In practice however, Aickin’s alpha often exceeds Kappa
because of Kappa’s excessive chance-agreement correction in some situations.

The next two sections 5.3 and 5.2.1 deal with the theoretical foundations of the
alpha and AC1 statistics and require some limited abstract thinking. Our primary
objective in these two sections is to answer the following question: “If we knew ev-
erything about all subjects and raters of interest (including the ratings that the raters
would assign to each subject, and the raters’ skill level), how would we evaluate inter-
rater reliability?” This hypothetical situation will lead to the creation of a theoretical
framework. But carrying out a real experiment based on a sample of subjects instead
of the whole subject population, always results in a loss of information about non-
participating subjects. Only the use of special estimation procedures will compensate
for these gaps in our knowledge. The result will be a statistical procedure that is sus-
ceptible to sampling errors. These errors also known as statistical errors, are discussed
in chapter 5 using the techniques of inferential statistics.

Although both sections 5.3 and 5.4 discuss the motivation behind the formulation
of AC1, and that of alpha, they are not essential for using equations 5.2.1 and 5.2.2
in practice with experimental data. Practitioners not interested in this inquiry could
skip these two sections without the chapter’s readability8 being affected, and continue
with section 5.5 that is devoted to the AC1 coefficient for multiple raters.

5.3 Aickin’s Theory

Aickin (1990) problem was to define a construct α (without a hat) that mea-
sures the extent of agreement between two raters A and B in a way that solely reflects
the similarities in their knowledge, experience, and judgment. That is α should be
insensitive to those agreements that may occur by pure chance, a possibility that
cannot be ignored when using discrete measurement scales. Although there could
be more than one way of defining such a parameter, Aickin proposed the following
definition:

“The α parameter is defined as the fraction of the entire subject population
made up of subjects that the two raters A and B classified identically for
cause, rather than by chance.”

Without providing an explicit definition of the notion of for-cause agreement,
Aickin considers that this type of agreement is reached on subjects that are easy to
score, also known as textbook subjects in the terminology of Grove et al. (1981).

8We nevertheless highly recommend the reading of these two sections for an ind-depth under-
standing of the concepts.
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A subject is considered easy to score when both raters have a strong opinion re-
garding its membership category. Disagreement as well as chance agreement on the
other hand, are assumed to occur only on subjects that are difficult to classify. Any
agreement on the hard-to-classify subjects is considered chance agreement. Aickin’s
theory consists of dividing the target population of subjects into two subpopula-
tions. These are the subpopulation of Hard-To-Score subjects (or H-subjects), and
the subpopulation of Easy-to-Score subjects (or E-subjects). Table 5.2 shows an ab-
stract representation of the distribution of N population subjects broken down by
rater and subpopulation in a two-level measurement scale study, as Aickin envisioned
it.

In Table 5.2, N
(h)
11 for example represents the count of H-subjects in the study

population expected to be classified into category 1 by both raters. Likewise, N
(h)
21

is the count of population H-subjects expected to be classified into categories 2 and
1 by raters A and B respectively. More generally, the subject population contains

N subjects, N
(h)
kl of which are expected to be H-subjects and to be classified into

categories k and l by raters A and B respectively. N
(e)
k (k = 1, 2) of the N popu-

lation subjects are expected to be E-subjects that both raters will classify into the
same category k. All cells of Table 5.2 that are colored in black do not contain any
population subjects in Aickin’s model.

Table 5.2: Distribution of N Population Subjects by Rater, Subpopulation, and
Response Category.

Rater B

Rater A Hard Subjects Easy Subjects

1 2 1 2
Total

Hard 1 N
(h)
11 N

(h)
12 N

(h)
1+

Subjects 2 N
(h)
21 N

(h)
22 N

(h)
2+

Nh

Easy 1 N
(e)
1 0 N

(e)
1

Subjects 2 0 N
(e)
2 N

(e)
2

Ne

N
(h)
+1 N

(h)
+2 N

(e)
1 N

(e)
2

Total
Nh Ne

N

Aickin’s α coefficient is then defined as follows:

α = Ne/N, (5.3.1)
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- 148 - Chapter 5: Constructing Agreement Coefficients

where Ne = Ne
1 + Ne

2 is the population count of E-subjects. Note that even if the
total count N of population subjects is known, the number Ne of population E-
subjects will be unknown. After selecting a sample of n subjects for an inter-rater
reliability study and rating them, the sub-sample of E-subjects will still be non-
identifiable. Therefore, a direct estimation of the α coefficient is not feasible. To solve
this problem, Aickin (1990) postulated a statistical model (to be presented in the
next subsection) that governs the classification probabilities, and that incorporates
α as a model parameter.

Some Remarks about Aickin’s Theory

• The raters are assumed to always agree on E-subjects, a disagreement being
possible on H-subjects only. Moreover, any such agreement is considered to be
for cause.

• Hard-to-score (resp. Easy-to-score) subjects have their hardness (resp. their
easiness) intimately tied to both raters’ knowledge. Consequently, the config-
uration of Table 5.2 is specific to the pair of raters being studied, and both
raters share the same Hard-to-score, and Easy-to-score subjects.

This second assumption is the most restrictive in Aickin’s theory. In practice
two raters are seldom expected to have the same knowledge and skill level. Some
subjects that one rater considers hard to score may prove easy to score for
another.

5.3.1 Aickin’s Probability Model

Let the probabilities Pkl, P
(a)
k|h , and P

(b)
l|h be defined as follows:

Pkl = Probability that raters A and B classify a randomly selected

subject into categories k and l respectively,

P
(a)
k|h = Probability that rater A classifies an H-subject into category k,

P
(b)
l|h = Probability that rater B classifies an H-subject into category l.

In statistical jargon, P
(a)
k|h is referred to as the conditional probability that rater

A classifies a randomly chosen subject into category k given that the subject was
selected from the H-subject sub-population. Aickin’s model is based on the following
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representation for the probability Pkl:

Pkl = (1− α)P
(a)
k|hP

(b)
l|h + α

⎛⎜⎜⎜⎜⎝
dklP

(a)
k|hP

(b)
l|h

q∑
k=1

P
(a)
k|hP

(b)
k|h

⎞⎟⎟⎟⎟⎠ , where dkl =

{
1 if k = l,
0 otherwise.

(5.3.2)

This equation can be seen as a direct application of the Bayes’ rule9 in probability
theory. The ratio in parentheses represents the conditional probability that both
raters classify a subject into the same category k, given that it is an E-subject. In
equation 5.3.2, 1−α represents the probability of selecting an H-subject and α that
of selecting an E-subject. It should also be noted that checking the validity of such
a model may not be a simple task.

By multiplying both sides of equation 5.3.2 by dkl and by summing, one obtains
the following:

αa =

q∑
k=1

Pkk −
q∑

k=1

P
(a)
k|hP

(b)
k|h

1−
q∑

k=1

P
(a)
k|hP

(b)
k|h

· (5.3.3)

Equation 5.3.3 shows that the α coefficient has a form similar to that of Kappa,
with the important exception that the percent chance agreement is computed based
on H-subjects only. That is, only the portion of the subject population where the
assumption of independence is expected to be satisfied is used to compute the per-
cent chance agreement. This provision surely protects Aickin’s coefficient against the
paradoxes associated with Kappa.

5.3.2 Estimating α from a Subject Sample

Using the n sample subjects that participated in the inter-rater reliability ex-
periment, the α coefficient is estimated by α̂a defined by equation 5.2.2 where the

9The Bayes’ rule stipulates that the probabilities P (F ) and P (G) of any two events F and G are
related as follows: P (F ) = P (G)P (F/G) + (1−P (G))P (F/G), where G is the complement event of
G and P (F/G) the conditional probability of F given G.
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probabilities P
(a)
k|h (k = 1, · · · , q) would be replaced with their sample-based coun-

terparts p
(a)
k|h. However, a direct calculation of α̂ is impossible due to the unknown

probabilities p
(a)
k|h (k = 1, · · · , q), and p

(b)
l|h (l = 1, · · · , q). Aickin (1990) proposed to

use the maximum likelihood estimates based on the system of three equations defined
by equations 5.2.3, 5.2.4, and 5.2.5. The first equation of this system is a version of
equation 5.3.3, the second and third equations are obtained by summing both sides
of equation 5.3.2 over k and l respectively.

5.4 Gwet’s Theory

Unlike Aickin’s alpha coefficient, which is defined as the probability that two
raters A and B agree for cause, Gwet’s AC1 (see Gwet, 2008a) is defined as the prob-
ability that two raters agree given that the subjects being rated are not susceptible
to agreement by pure chance. This definition is more in line with the goal set by
Cohen (1960) for Kappa. Cohen wanted Kappa to represent “... the proportion of
agreement after chance agreement is removed from consideration ...” The two letters
A and C in “AC1 statistic” stand for Agreement Coefficient, while subscript 1 in-
dicates that only total agreement between the two raters (i.e. diagonal elements) is
considered as agreement10. Another inter-rater reliability coefficient named the AC2,
which considers certain types of disagreements as partial agreements (also referred
to as “second-level agreement”) is discussed later in this chapter.

A key conceptual difference between AC1 and alpha lies on the pool of subjects
used as basis for computing the coefficients. Aickin’s alpha is based on all subjects,
while Gwet’s AC1 is based on the sub-population of subjects obtained after removing
from the initial population all subjects that may lead to chance agreement. Although
Gwet’s model has some similarities with Aickin’s, the following differences should be
mentioned:

• In Aickin’s model, any H-subject is hard to score not just for one rater, but for
both. Likewise any E-subject will be easy to score for both raters. In Gwet’s
model, each rater has his/her own group of E-subjects, and his/her own group
of H-subjects. Therefore, some of rater A’s E-subjects will be rater B’s H-
subjects, and vice-versa (see Table 5.3).

• In both Gwet’s and Aickin’s models, any agreement involving an H-subject
(with either rater) is by definition considered as agreement by chance. In Gwet’s
model however, all population H-subjects that would lead to an agreement by

10This will also be referred to as first-level agreement throughout the book; hence the use of
subscript “1.”
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chance - assuming they are identifiable - must be removed from the pool of sub-
jects before computing the relative number of for-cause agreement subjects. In
Aickin’s model, the relative number of for-cause agreement subjects is calcu-
lated with respect to the entire subject population.

Table 5.3: Distribution of Population Subjects by Sub-Population of H- and
E-Subjects, by Rater, and by Response Category (1,2)

Rater B

Rater A Hard Subjects Easy Subjects

1 2 1 2
Total

Hard 1 Nhh
11 Nhh

12 Nhe
11 Nhe

12 Nh
1+

Subjects 2 Nhh
21 Nhh

22 Nhe
21 Nhe

22 Nhh
2+

Nhh+

Easy 1 Neh
11 Neh

12 Nee
11 0 Ne

1+

Subjects 2 Neh
21 Neh

22 0 Nee
22 Ne

2+

Ne+

Nh
+1 Nh

+2 Ne
+1 Ne

+2
Total

N+h N+e

N

Table 5.3 shows the configuration of the study population of N subjects from
which a subject sample will be selected. The quantity Neh

12 for example, is the count
of subjects identified as E-subjects for rater A and as H-subjects for rater B, and
expected to be classified into categories 1 and 2 by raters A and B respectively. As
previously indicated, subjects identified as E-subjects for both subjects can only lead
to an agreement for cause. No disagreement is possible on E-subjects. Hence the two
cells with 0 frequency seen in Table 5.3.

Let κ1g be the construct associated with the AC1 coefficient. It represents the ideal
quantity that AC1 will approximate with the rating data collected from a reliability
experiment. If all the information shown in Table 5.3 was known for all subjects of
interest (not just those in an experimental sample), then the AC1 statistic would
be free of sampling errors and would be identical to the theoretical construct κ1g,
defined for a general number q of categories as follows:
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κ1g =

q∑
k=1

Nee
kk

N −
(

q∑
k=1

Nhh
kk +

q∑
k=1

Nhe
kk +

q∑
k=1

Neh
kk

) , (5.4.1)

where the denominator represents the count of population subjects on which no
agreement between raters can be reached by pure chance11. Note that under the
current setting, Aickin’s alpha coefficient would be defined as follows:

αa =
1

N

q∑
k=1

Nee
kk · (5.4.2)

Aickin excludes chance-agreement subjects from the count of agreement sub-
jects in the coefficient’s numerator, but does not exclude them from the reference
population in the denominator. Therefore, Gwet’s AC1 coefficient, which excludes
chance-agreement subjects from consideration entirely is expected to be higher than
Aickin’s alpha coefficient.

COMPARING κ1g AND αa

I am not an advocate of Aickin’s alpha coefficient for one reason: by excluding
subjects that are susceptible to chance agreement from the numerator while leaving
them in the denominator, Aickin makes it difficult if not impossible for its coefficient
to reach the perfect value of 1. This is particularly the case when “Hard” subjects
are present in the subject population. Consequently, Aickin’s alpha coefficient could
be artificially low for some subject populations.

The rationale that led to equation 5.4.1 can be looked at this way: Cohen (1960)
stated an attractive property that he expected his agreement coefficient to satisfy,
but ended up formulating Kappa in a way that did not satisfy it. Here is what Cohen
(1960) said on page 40 (second paragraph): “The coefficient κ ... is the proportion of
agreement after chance agreement is removed from consideration.” The denomina-
tor in equation 5.4.1 aims at removing chance agreement from consideration before
computing the proportion of agreement, by subtracting from the subject population
all subjects susceptible to lead to an agreement by pure chance. The formula Cohen
ended up developing was rather based on the following false assumption he made on
page 38: “A certain amount of agreement is to be expected by chance, which is read-
ily determined by finding the joint probabilities of the marginals.” But Kappa does

11This denominator may include some disagreements as well as some agreement for cause. Only
subjects causing agreement by chance are removed.
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not attempt to quantify that “certain amount” of agreement expected by chance. The
motive for not doing it is unknown to me. The joint probabilities of the marginals
will hardly help quantify chance agreement, which by the way will occur only on an
unknown proportion of subjects, and not on all of them.

5.4.1 The Probabilistic Model

Although equation 5.4.1 provides a definitional expression for AC1, it is
useless for computing it since “Hard” and “Easy” subjects cannot be identified.
What is needed is a probabilistic model that links observed ratings to the theoretical
concepts of “Hard” and “Easy” subjects. Although Table 5.3 shows only two response
categories for illustration purposes, I assume here that the rater must classify subjects
into one of q possible response categories labeled as k = 1, · · · , q.

Let us consider the following events:

• R: The selected subject is an H-subject (i.e. one of the two raters or both will
perform a nondeterministic rating when classifying this subject).

• A: Both raters A and B agree on the classification of the selected subject.

• C = A ∩ R: Represents an agreement by chance (i.e. the selected subject is an
H-subject, and both raters A and B agree about its classification).

For any two categories k and l, a straight application of the Bayes’ rule reveals
that the probability Pkl that raters A and B classify a randomly selected subject into
categories k and l respectively can be expressed as follows:

Pkl = P (C)Pkl|C + P
(C)Pkl|C , (5.4.3)

where C is the event “No Chance Agreement,” the complementary event of C, and
Pkl|C the conditional probability that raters A and B classify a subject into categories
k and l given event C. Since P (C) = P (R)P (A|R), I propose the following statistical
model for the join classification probability:

Pkl = P (R)
dkl
q2

+
(
1− P (R)/q

)
Pkl|C , (5.4.4)

where dkl = 1 if k = l and dkl = 0 if not. Equation 5.4.4 stems from the fact
that P (C)Pkl|C = P (R)P (A/R)Pkl|C , and from the hypothesis that the probability
P (A/R) of agreement given a random rating is 1/q and Pkl|C = dkl/q. Some authors
(e.g. Grove et al., 1981, among others) pointed out that under the assumption of ran-
dom rating, it may be inappropriate to assign equal probability 1/q to all categories.

Get the entire ebook for $19.95 using the link: https://sites.fastspring.com/agreestat/instant/cac5ed978_1_7923_5463_2e

https://agreestat.com/books/cac5/ https://agreestat.com/books/



- 154 - Chapter 5: Constructing Agreement Coefficients

One of their recommendations was the use of observed marginal probabilities. I do
not recommend this and here is why: if a rater believes that one category is more
likely than the others to be the correct one, then that category must be selected
and the rating process should not even be considered random in the first place. Why
would a rater rates H-subjects in the same way E-subjects are?

By multiplying both sides of equation 5.4.4 by dkl and by summing over k and l
one obtains:

q∑
k=1

Pkk = P (R)/q +
(
1− P (R)/q

)
κ1g.

Consequently κ1g can be expressed as follows:

κ1g =
Pa − P (R)/q

1− P (R)/q
, where Pa =

q∑
k=1

Pkk. (5.4.5)

To be able to compute κ1g from observed ratings, I need to compute the probability
P (R) of random rating, which represents the proportion of Hard-to-Score subjects
for all raters combined.

5.4.2 Quantifying the Probability P (R) of Selecting an H-Subject

For the sake of simplicity let us start with a simple experiment that involves
2 raters A and B, and 2 categories labeled as 1 and 2. I am also going to assume
that the distribution of subjects across categories is the only information at our
disposal that tells us how the raters classified the subjects. That is, no information
external to the experiment exists on the subjects and the level of difficulty raters
may experience in rating them. I want to use the distribution of subjects to quantify
the propensity for random rating. In other words, given the observed distribution of
subjects by category and by rater, what is the probability that a rater classifies a
subject randomly?

The distribution of raters across categories is described by the 2 probabilities π1
and π2 with π2 = 1 − π1. These classification probabilities are aggregate measures
of individual raters’ propensity for classification in specific categories (see equation
5.2.1). The use of summary classification probabilities aims at minimizing individual
rater effects when quantifying the probability for a subject to be classified randomly.
Each pair (π1, π2) can be represented by a point on the diagonal line of Figure 5.1.
The arbitrary point X(π1, π2) can move from the top at point A down to the bottom
at point C. Each position of point X is associated with a value of P (R).

A key assumption that is made here is that point M, which is in the middle be-
tween points A and C, is where the probability of random rating is at its maximum12.

12This assumption is based upon the fact that a random assignment of ratings to subjects is
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This probability reaches its minimum value at the two extremes A and C. Quanti-
fying P (R) amounts to defining a measure of probability [0, 1]× [0, 1] −→ [0, 1] that
maps any pair (π1, π2) to a value in the interval [0, 1].

Figure 5.1: Graphical description of the propensity for classification into categories
1 and 2.

Note that any pair (π1, π2) can be associated with 2 points X1(π1, π2) and
X2(π2, π1) on the diagonal line that are symmetric across the middle point M , and
which define a rectangle as shown in Figure 5.2. As points X1 and X2 move simul-
taneously towards the 2 extremes A and C, the area of the rectangle expands while
the area of the shaded region shrinks. The opposite occurs when the 2 points move
towards the center M . The probability of random rating is measured by the area of
the shaded region. When the 2 points X1 and X2 meet at the center M , the whole
rectangle OABC becomes shaded, and its area of 1 represents the maximum value
of the probability of radom rating P (R).

One can prove that the area of the shaded region of Figure 5.2 is 4π1(1 − π1).
To facilitate the generalization of the random rating propensity, this expression can
also be rewritten as follows:

P (R) =
[
π1(1− π1) + π2(1− π2)

]/
(1− 1/2),

where 2 represents the number of categories q. For an arbitrarily large number of

expected to result in a distribution of subjects described by the probabilities π1 = π2 = 0.5 associated
with point M .
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categories q, P (R) is described as follows:

P (R) =

q∑
k=1

πk(1− πk)

1− 1/q
, (5.4.6)

where πk is the probability that a randomly selected subject is classified into category
k by a rater (also selected randomly among raters).

Figure 5.2: Graphical representation of the probability of random rating.

Equation 5.4.6 can also be justified using the chi-square distance between the ob-
served subject distribution and the uniform distribution, from the family of quadratic
distances on probabilities whose theoretical foundations were thoroughly studied by
Lindsay et al. (2008).. The numerator of equation 5.4.6 would be the observed dis-
tance, and the denominator its maximum value.

One way to verify how well equation 5.4.6 works is to simulate a population of
subjects similar to what is described in Table 5.3, to define the “true” inter-rater
reliability according to equation 5.4.1, and to study the statistical properties of the
coefficient given by equation 5.2.1. This verification was done by Gwet (2008a), and
the results were very satisfactory.
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Formulating κ1g Relative to Model 5.4.4

It follows from equations 5.4.5 and 5.4.6 that the κ1g construct may be rewritten
as follows:

κ1g =
Pa − Pe

1− Pe
, where Pe =

1

q − 1

q∑
k=1

πk(1− πk)· (5.4.7)

Equation 5.4.7 shows that the κ1g statistic has a form similar to that of Kappa, with
the same percent agreement probability Pa and a different percent chance agreement
Pe. To understand how Pe measures chance agreement, let us consider the simple
situation where the number of categories is limited to 2. Then Pe = 2π1(1 − π1)
where π1 is the probability that classify a subject is classified into category 1. If
π1 = 1 (i.e. all subjects are classified into category 1), then the percent chance
agreement is 0. Intuitively, one can see that if all subjects are systematically classified
into one category, then the raters must know what they are doing. An agreement
under these conditions is not achieved as a result of pure chance, and the rating
process is considered deterministic. On the other hand, if π1 = 1/2 (i.e. a randomly
selected subject has the same chance to be classified into either category), then
Pe = 0.5. Again, if the subjects are equally distributed across the categories, then
the uniform distribution of subjects matches the configuration that would be obtained
if all subjects were H-subjects. The relative number of subjects on the diagonal will
then be 50%, which equals Pe.

5.5 Calculating AC1 for three Raters or More

Section 5.4 introduced the AC1 coefficient as an abstract construct, the objec-
tive being to present an explicit formulation of the concept it represents. This goal
was achieved by assuming the hypothetical situation where all subjects of interest
as well as their categorization by each of the raters are known. The known includes
the raters’ knowledge, as well as the group of subjects they consider hard or easy to
score. This theoretical framework does not provide the concrete pathway for quanti-
fying the extent of agreement among raters in a practical setting where only observed
ratings assigned to subjects are known. Ratings observed during a reliability experi-
ment must be used with valid estimation methods to obtain the concrete value of an
agreement coefficient.

An inter-rater reliability experiment is generally based on a sample of n subjects
that represents only a fraction of the larger population subjects of interest. The re-
sulting sample-based AC1 coefficient is denoted by κ̂1g (the hat indicating that it is
an approximation of the fixed and unknown abstract κ1g of equation 5.4.1). When
the number of raters is limited to two, then equation 5.2.1 is the coefficient that
practitioners would use since it provides a good approximation of the population pa-
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